Abstract
The functional role of neutrophils during acute inflammatory responses is regulated by two high affinity interleukin-8 receptors (CXCR1 and CXCR2) that are rapidly desensitized and internalized upon binding their cognate chemokine ligands. The efficient re-expression of CXCR1 on the surface of neutrophils following agonist-induced internalization suggests that CXCR1 surface receptor turnover may involve regulatory pathways and intracellular factors similar to those regulating β2-adrenergic receptor internalization and re-expression. To examine the internalization pathway utilized by ligand- activated CXCR1, a CXCR1-GFP construct was transiently expressed in two different cell lines, HEK 293 and RBL-2H3 cells. While interleukin-8 stimulation promoted CXCR1 sequestration in RBL-2H3 cells, receptor internalization in HEK 293 cells required co-expression of G protein-coupled receptor kinase 2 and β-arrestin proteins. The importance of β-arrestins in CXCR1 internalization was confirmed by the ability of a dominant negative β- arrestin 1-V53D mutant to block internalization of CXCR1 in RBL-2H3 cells. A role for dynamin was also demonstrated by the lack of CXCR1 internalization in dynamin I-K44A dominant negative mutant-transfected RBL-2H3 cells. Agonist-promoted co-localization of transferrin and CXCR1-GFP in endosomes of RBL-2H3 cells confirmed that receptor internalization occurs via clathrin- coated vesicles. Our data provides a direct link between agonist-induced internalization of CXCR1 and a requirement for G protein-coupled receptor kinase 2, β-arrestins, and dynamin during this process.
Original language | English |
---|---|
Pages (from-to) | 16287-16294 |
Number of pages | 8 |
Journal | Journal of Biological Chemistry |
Volume | 274 |
Issue number | 23 |
DOIs | |
Publication status | Published - Jun 4 1999 |
Externally published | Yes |
ASJC Scopus Subject Areas
- Biochemistry
- Molecular Biology
- Cell Biology
PubMed: MeSH publication types
- Journal Article
- Research Support, Non-U.S. Gov't