Abstract
Background: Plastics now pollute marine environments across the globe. On entering these environments, plastics are rapidly colonised by a diverse community of microorganisms termed the plastisphere. Members of the plastisphere have a myriad of diverse functions typically found in any biofilm but, additionally, a number of marine plastisphere studies have claimed the presence of plastic-biodegrading organisms, although with little mechanistic verification. Here, we obtained a microbial community from marine plastic debris and analysed the community succession across 6 weeks of incubation with different polyethylene terephthalate (PET) products as the sole carbon source, and further characterised the mechanisms involved in PET degradation by two bacterial isolates from the plastisphere. Results: We found that all communities differed significantly from the inoculum and were dominated by Gammaproteobacteria, i.e. Alteromonadaceae and Thalassospiraceae at early time points, Alcanivoraceae at later time points and Vibrionaceae throughout. The large number of encoded enzymes involved in PET degradation found in predicted metagenomes and the observation of polymer oxidation by FTIR analyses both suggested PET degradation was occurring. However, we were unable to detect intermediates of PET hydrolysis with metabolomic analyses, which may be attributed to their rapid depletion by the complex community. To further confirm the PET biodegrading potential within the plastisphere of marine plastic debris, we used a combined proteogenomic and metabolomic approach to characterise amorphous PET degradation by two novel marine isolates, Thioclava sp. BHET1 and Bacillus sp. BHET2. The identification of PET hydrolytic intermediates by metabolomics confirmed that both isolates were able to degrade PET. High-throughput proteomics revealed that whilst Thioclava sp. BHET1 used the degradation pathway identified in terrestrial environment counterparts, these were absent in Bacillus sp. BHET2, indicating that either the enzymes used by this bacterium share little homology with those characterised previously, or that this bacterium uses a novel pathway for PET degradation. Conclusions: Overall, the results of our multi-OMIC characterisation of PET degradation provide a significant step forwards in our understanding of marine plastic degradation by bacterial isolates and communities and evidences the biodegrading potential extant in the plastisphere of marine plastic debris. [MediaObject not available: see fulltext.]
Original language | English |
---|---|
Article number | 141 |
Journal | Microbiome |
Volume | 9 |
Issue number | 1 |
DOIs | |
Publication status | Published - Dec 2021 |
Bibliographical note
Funding Information:RW was supported by a Midlands Integrative Biosciences Training Partnership PhD scholarship via grant BB/M01116X/1, JC-O by the Natural Environment Research Council Independent Research Fellowship NE/K009044/1 and Ramón y Cajal contract RYC-2017-22452 (funded by the Ministry of Science, Innovation and Universities, the National Agency of Research, and the European Social Fund), RB by the MINECO project CTM2015-70180-R (FEDER cofunding) and MIG by European Research Council grant 638631. This work was supported by the Agencia Estatal de Investigación (project PID2019-109509RB-I00 / AEI / 10.13039/501100011033).
Funding Information:
We thank Andrew Millard and Slawomir Michniewski for assistance with running the MiSeq, Maria del Mar Aguilo-Ferretjans for help with proteomics sample preparation, Alex Baker and Christopher Stubbs for assistance with the ?FTIR, and the Christie-Oleza and Langille groups (in particular Vinko Zadjelovic, Audam Chhun, Gabriel Erni Cassola and Gavin Douglas) for helpful discussions throughout the project. We also acknowledge technical support from the WPH Proteomic Facility at the University of Warwick and thank the Warwick Institute for Synthetic Biology for access to the GeneVac. Technical assistance in processing the metabolomics samples by LC-Orbitrap-MS/MS provided by Gabriel Martorell and Rosa Gomila, both from the Scientific and Technical Center (SCT) of the University of the Balearic Islands, is also greatly appreciated.
Publisher Copyright:
© 2021, The Author(s).
ASJC Scopus Subject Areas
- Microbiology
- Microbiology (medical)
PubMed: MeSH publication types
- Journal Article
- Research Support, Non-U.S. Gov't
- Video-Audio Media