Annexin A2: The importance of being redox sensitive

Patrícia A. Madureira, David M. Waisman

Research output: Contribution to journalReview articlepeer-review

39 Citations (Scopus)

Abstract

Hydrogen peroxide (H2O2) is an important second messenger in cellular signal transduction. H2O2-dependent signalling regulates many cellular processes, such as proliferation, differentiation, migration and apoptosis. Nevertheless, H2O2 is an oxidant and a major contributor to DNA damage, protein oxidation and lipid peroxidation, which can ultimately result in cell death and/or tumourigenesis. For this reason, cells have developed complex antioxidant systems to scavenge ROS. Recently, our laboratory identified the protein, annexin A2, as a novel cellular redox regulatory protein. Annexin A2 possesses a reactive cysteine residue (Cys-8) that is readily oxidized by H2O2 and subsequently reduced by the thioredoxin system, thereby enabling annexin A2 to participate in multiple redox cycles. Thus, a single molecule of annexin A2 can inactivate several molecules of H2O2. In this report, we will review the studies detailing the reactivity of annexin A2 thiols and the importance of these reactive cysteine(s) in regulating annexin A2 structure and function. We will also focus on the recent reports that establish novel functions for annexin A2, namely as a protein reductase and as a cellular redox regulatory protein. We will further discuss the importance of annexin A2 redox regulatory function in disease, with a particular focus on tumour progression.

Original languageEnglish
Pages (from-to)3568-3594
Number of pages27
JournalInternational Journal of Molecular Sciences
Volume14
Issue number2
DOIs
Publication statusPublished - Feb 2013

ASJC Scopus Subject Areas

  • Catalysis
  • Molecular Biology
  • Spectroscopy
  • Computer Science Applications
  • Physical and Theoretical Chemistry
  • Organic Chemistry
  • Inorganic Chemistry

Fingerprint

Dive into the research topics of 'Annexin A2: The importance of being redox sensitive'. Together they form a unique fingerprint.

Cite this