TY - JOUR
T1 - Arabidopsis RING E3 ligase XBAT32 regulates lateral root production through its role in ethylene biosynthesis
AU - Prasad, Madhulika E.
AU - Schofield, Andrew
AU - Lyzenga, Wendy
AU - Liu, Hongxia
AU - Stone, Sophia L.
PY - 2010/8
Y1 - 2010/8
N2 - XBAT32, a member of the RING domain-containing ankyrin repeat subfamily of E3 ligases, was previously identified as a positive regulator of lateral root development. Arabidopsis (Arabidopsis thaliana) plants harboring a mutation in XBAT32 produce fewer lateral roots that wild-type plants. We found that xbat32 mutants produce significantly more ethylene than wild-type plants and that inhibition of ethylene biosynthesis or perception significantly increased xbat32 lateral root production. XBAT32 interacts with the ethylene biosynthesis enzymes AMINOCYCLOPROPANE-1-CARBOXYLIC ACID SYNTHASE4 (ACS4) and ACS7 in yeast-two-hybrid assays. XBAT32 is capable of catalyzing the attachment of ubiquitin to both ACS4 and ACS7 in in vitro ubiquitination assays. These results suggest that XBAT32 negatively regulates ethylene biosynthesis by modulating the abundance of ACS proteins. Loss of XBAT32 may promote the stabilization of ACSs and lead to increased ethylene synthesis and suppression of lateral root formation. XBAT32 may also contribute to the broader hormonal cross talk that influences lateral root development. While auxin treatments only partially rescue the lateral root defect of xbat32, they completely restore wild-type levels of xbat32 lateral root production when coupled with ethylene inhibition. Abscisic acid, an antagonist of ethylene synthesis/signaling, was also found to stimulate rather than inhibit xbat32 lateral root formation, and abscisic acid acts synergistically with auxin to promote xbat32 lateral root production.
AB - XBAT32, a member of the RING domain-containing ankyrin repeat subfamily of E3 ligases, was previously identified as a positive regulator of lateral root development. Arabidopsis (Arabidopsis thaliana) plants harboring a mutation in XBAT32 produce fewer lateral roots that wild-type plants. We found that xbat32 mutants produce significantly more ethylene than wild-type plants and that inhibition of ethylene biosynthesis or perception significantly increased xbat32 lateral root production. XBAT32 interacts with the ethylene biosynthesis enzymes AMINOCYCLOPROPANE-1-CARBOXYLIC ACID SYNTHASE4 (ACS4) and ACS7 in yeast-two-hybrid assays. XBAT32 is capable of catalyzing the attachment of ubiquitin to both ACS4 and ACS7 in in vitro ubiquitination assays. These results suggest that XBAT32 negatively regulates ethylene biosynthesis by modulating the abundance of ACS proteins. Loss of XBAT32 may promote the stabilization of ACSs and lead to increased ethylene synthesis and suppression of lateral root formation. XBAT32 may also contribute to the broader hormonal cross talk that influences lateral root development. While auxin treatments only partially rescue the lateral root defect of xbat32, they completely restore wild-type levels of xbat32 lateral root production when coupled with ethylene inhibition. Abscisic acid, an antagonist of ethylene synthesis/signaling, was also found to stimulate rather than inhibit xbat32 lateral root formation, and abscisic acid acts synergistically with auxin to promote xbat32 lateral root production.
UR - http://www.scopus.com/inward/record.url?scp=77955686446&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=77955686446&partnerID=8YFLogxK
U2 - 10.1104/pp.110.156976
DO - 10.1104/pp.110.156976
M3 - Article
C2 - 20511490
AN - SCOPUS:77955686446
SN - 0032-0889
VL - 153
SP - 1587
EP - 1596
JO - Plant Physiology
JF - Plant Physiology
IS - 4
ER -