Abstract
Breast cancer subtyping, based on the expression of hormone receptors and other genes, can determine patient prognosis and potential options for targeted therapy. Among breast cancer subtypes, tumors of basal-like and claudin-low subtypes are typically associated with worse patient outcomes, are primarily classified as triplenegative breast cancers (TNBC), and cannot be treated with existing hormonereceptor- targeted therapies. Understanding the molecular basis of these subtypes will lead to the development of more effective treatment options for TNBC. In this study, we focus on retinoic acid receptor responder 1 (RARRES1) as a paradigm to determine if breast cancer subtype dictates protein function and gene expression regulation. Patient tumor dataset analysis and gene expression studies of a 26 cellline panel, representing the five breast cancer subtypes, demonstrate that RARRES1 expression is greatest in basal-like TNBCs. Cell proliferation and tumor growth assays reveal that RARRES1 is a tumor suppressor in TNBC. Furthermore, gene expression studies, Illumina HumanMethylation450 arrays, and chromatin immunoprecipitation demonstrate that expression of RARRES1 is retained in basal-like breast cancers due to hypomethylation of the promoter. Additionally, expression of the cancer stem cell marker, aldehyde dehydrogenase 1A3, which provides the required ligand (retinoic acid) for RARRES1 transcription, is also specific to the basal-like subtype. We functionally demonstrate that the combination of promoter methylation and retinoic acid signaling dictates expression of tumor suppressor RARRES1 in a subtype-specific manner. These findings provide a precedent for a therapeutically-inducible tumor suppressor and suggest novel avenues of therapeutic intervention for patients with basal-like breast cancer.
Original language | English |
---|---|
Pages (from-to) | 44096-44112 |
Number of pages | 17 |
Journal | Oncotarget |
Volume | 7 |
Issue number | 28 |
DOIs | |
Publication status | Published - 2016 |
Bibliographical note
Funding Information:Support was provided by grant funding to PM from the Canadian Institutes of Health Research (CIHR, MOP-130304), the Beatrice Hunter Cancer Research Institute (BHCRI), the Breast Cancer Society of Canada, and the QEII Health Sciences Center Foundation; by grant funding to ICGW from the Natural Sciences and Engineering Research Council of Canada (436204-2013); and by grant funding to PWKL and SG by CIHR. KMC, JPM, DV, MS, DC, MW, and MLT are supported by studentship or trainee awards from the BHCRI, Canadian Breast Cancer Foundation, and the Canadian Imperial Bank of Commerce. KMC and DC are supported by CGS-D awards, and MLT by a CGS-M award from CIHR. KMC, MLT, and DC are supported by the Nova Scotia Health Research Foundation. MLT is supported by NS Research and Innovation Graduate Scholarships. KMC is a Killam Scholar.
ASJC Scopus Subject Areas
- Oncology