Diverse molecular signatures for ribosomally 'active' Perkinsea in marine sediments

Aurélie Chambouvet, Cédric Berney, Sarah Romac, Stéphane Audic, Finlay Maguire, Colomban De Vargas, Thomas A. Richards

Research output: Contribution to journalArticlepeer-review

35 Citations (Scopus)

Abstract

Background: Perkinsea are a parasitic lineage within the eukaryotic superphylum Alveolata. Recent studies making use of environmental small sub-unit ribosomal RNA gene (SSU rDNA) sequencing methodologies have detected a significant diversity and abundance of Perkinsea-like phylotypes in freshwater environments. In contrast only a few Perkinsea environmental sequences have been retrieved from marine samples and only two groups of Perkinsea have been cultured and morphologically described and these are parasites of marine molluscs or marine protists. These two marine groups form separate and distantly related phylogenetic clusters, composed of closely related lineages on SSU rDNA trees. Here, we test the hypothesis that Perkinsea are a hitherto under-sampled group in marine environments. Using 454 diversity 'tag' sequencing we investigate the diversity and distribution of these protists in marine sediments and water column samples taken from the Deep Chlorophyll Maximum (DCM) and sub-surface using both DNA and RNA as the source template and sampling four European offshore locations. Results: We detected the presence of 265 sequences branching with known Perkinsea, the majority of them recovered from marine sediments. Moreover, 27% of these sequences were sampled from RNA derived cDNA libraries. Phylogenetic analyses classify a large proportion of these sequences into 38 cluster groups (including 30 novel marine cluster groups), which share less than 97% sequence similarity suggesting this diversity encompasses a range of biologically and ecologically distinct organisms. Conclusions: These results demonstrate that the Perkinsea lineage is considerably more diverse than previously detected in marine environments. This wide diversity of Perkinsea-like protists is largely retrieved in marine sediment with a significant proportion detected in RNA derived libraries suggesting this diversity represents ribosomally 'active' and intact cells. Given the phylogenetic range of hosts infected by known Perkinsea parasites, these data suggest that Perkinsea either play a significant but hitherto unrecognized role as parasites in marine sediments and/or members of this group are present in the marine sediment possibly as part of the 'seed bank' microbial community.

Original languageEnglish
Article number110
JournalBMC Microbiology
Volume14
Issue number1
DOIs
Publication statusPublished - Apr 29 2014
Externally publishedYes

Bibliographical note

Funding Information:
AC is supported by a Marie Curie Intra-European Fellowship grant (FP7-PEOPLE-2011-IEF - 299815 PARAFROGS) and an EMBO Long-Term fellowship (ATL-1069-2011). The work is part of EU ERA-Net program BiodivERsA, under the project BioMarKs (Biodiversity of Marine euKaryotes). TAR is an EMBO Young Investigator and is supported by research grants from the Gordon and Betty Moore Foundation (Grant GBMF3307), NERC and the BBSRC. CB thanks NERC for a Standard Research Grant (NE/H009426/1). We are grateful to Laure Guillou for providing the Parvilucifera rostrata (RCC2800) SSU sequence prior to publication.

ASJC Scopus Subject Areas

  • Microbiology
  • Microbiology (medical)

Fingerprint

Dive into the research topics of 'Diverse molecular signatures for ribosomally 'active' Perkinsea in marine sediments'. Together they form a unique fingerprint.

Cite this