Evidence for rapid "metabolic switching" through lipoprotein lipase occupation of endothelial-binding sites

Thomas Pulinilkunnil, Ashraf Abrahani, Jospy Varghese, Nathan Chan, Irvin Tang, Sanjoy Ghosh, Jerze Kulpa, Michael Allard, Roger Brownsey, Brian Rodrigues

Research output: Contribution to journalArticlepeer-review

44 Citations (Scopus)

Abstract

During diabetes, impaired glucose transport and utilization by the heart switches energy production to exclusive β-oxidation of fatty acid (FA). In the current study, we examined the contribution of cardiac lipoprotein lipase (LPL) towards providing FA to the diabetic heart. Streptozotocin (STZ) caused an augmentation of LPL activity at the coronary lumen, an effect duplicated by diazoxide (DZ). With DZ, the amplification of LPL at the coronary luminal surface was determined to be exceptionally rapid. Interestingly, unlike DZ, the capability of hearts from STZ animals to maintain this amplified LPL activity was sustained in vitro. This increased enzyme in the hyperglycemic heart is likely unrelated to an increase in the number of capillary endothelial LPL-binding sites. Our data imply that binding sites for LPL in the control rat heart are only partly occupied by the enzyme and diabetes rapidly initiates filling of all of these sites. Phloridzin treatment of STZ animals normalized plasma glucose with no effect on luminal LPL suggesting that the effects of diabetes on LPL are also largely independent of changes in blood glucose. Both 2 and 8 U of insulin normalized plasma glucose in DZ-treated animals but only 8 U reversed DZ-induced augmentation of cardiac luminal LPL. Our data suggest that impaired intracellular glucose utilization allows rapid vectorial transfer of LPL to unoccupied binding sites to supply the diabetic heart with excess FA. The persistence of increased coronary luminal LPL even in a setting of normoglycemia may provide excessive FA to the diabetic heart with deleterious consequences over the long term.

Original languageEnglish
Pages (from-to)1093-1103
Number of pages11
JournalJournal of Molecular and Cellular Cardiology
Volume35
Issue number9
DOIs
Publication statusPublished - Sept 1 2003
Externally publishedYes

Bibliographical note

Funding Information:
The studies described in this paper were supported by operating grants from the Canadian Diabetes Association (in honor of Ralph Gregory Chalmers), Heart and Stroke Foundation of B.C. and Yukon, and CIHR. The financial support of the Health Research Foundation/Canadian Institutes of Health Research for a Graduate Research Scholarship to Thomas Pulinilkunnil and Sanjoy Ghosh is gratefully acknowledged.

ASJC Scopus Subject Areas

  • Molecular Biology
  • Cardiology and Cardiovascular Medicine

Fingerprint

Dive into the research topics of 'Evidence for rapid "metabolic switching" through lipoprotein lipase occupation of endothelial-binding sites'. Together they form a unique fingerprint.

Cite this