Heart energy signature spectrogram for cardiovascular diagnosis

Vladimir Kudriavtsev, Vladimir Polyshchuk, Douglas L. Roy

Research output: Contribution to journalArticlepeer-review

36 Citations (Scopus)

Abstract

A new method and application is proposed to characterize intensity and pitch of human heart sounds and murmurs. Using recorded heart sounds from the library of one of the authors, a visual map of heart sound energy was established. Both normal and abnormal heart sound recordings were studied. Representation is based on Wigner-Ville joint time-frequency transformations. The proposed methodology separates acoustic contributions of cardiac events simultaneously in pitch, time and energy. The resolution accuracy is superior to any other existing spectrogram method. The characteristic energy signature of the innocent heart murmur in a child with the S3 sound is presented. It allows clear detection of S1, S2 and S3 sounds, S2 split, systolic murmur, and intensity of these components. The original signal, heart sound power change with time, time-averaged frequency, energy density spectra and instantaneous variations of power and frequency/pitch with time, are presented. These data allow full quantitative characterization of heart sounds and murmurs. High accuracy in both time and pitch resolution is demonstrated. Resulting visual images have self-referencing quality, whereby individual features and their changes become immediately obvious.

Original languageEnglish
Article number16
JournalBioMedical Engineering Online
Volume6
DOIs
Publication statusPublished - May 4 2007

ASJC Scopus Subject Areas

  • Radiological and Ultrasound Technology
  • Biomaterials
  • Biomedical Engineering
  • Radiology Nuclear Medicine and imaging

Fingerprint

Dive into the research topics of 'Heart energy signature spectrogram for cardiovascular diagnosis'. Together they form a unique fingerprint.

Cite this