TY - JOUR
T1 - Homomultimerization of the reovirus p14 fusion-associated small transmembrane protein during transit through the ER-Golgi complex secretory pathway
AU - Corcoran, Jennifer A.
AU - Clancy, Eileen K.
AU - Duncan, Roy
PY - 2011/1
Y1 - 2011/1
N2 - The reovirus fusion-associated small transmembrane (FAST) proteins are the smallest known viral membrane-fusion proteins. How these diminutive fusogens mediate cell-cell fusion and syncytium formation is unclear. Ongoing efforts are aimed at defining the roles of the FAST protein ecto-, endo- and transmembrane domains in the membrane-fusion reaction. We now provide direct evidence for homomultimer formation by the FAST proteins by using an anti-haemagglutinin (HA) mAb to co-precipitate the untagged p14 FAST protein from cells co-transfected with HA-tagged p14. Disrupting the intracellular endoplasmic reticulum-Golgi complex vesicle transport pathway prevented p14 homomultimer formation, while lower pH disrupted p14 multimers. The p14 endodomain or transmembrane domains are not required for multimer formation, which, along with the pH sensitivity and the distribution of histidine residues, suggests the 36 aa p14 ectodomain is a multimerization motif.
AB - The reovirus fusion-associated small transmembrane (FAST) proteins are the smallest known viral membrane-fusion proteins. How these diminutive fusogens mediate cell-cell fusion and syncytium formation is unclear. Ongoing efforts are aimed at defining the roles of the FAST protein ecto-, endo- and transmembrane domains in the membrane-fusion reaction. We now provide direct evidence for homomultimer formation by the FAST proteins by using an anti-haemagglutinin (HA) mAb to co-precipitate the untagged p14 FAST protein from cells co-transfected with HA-tagged p14. Disrupting the intracellular endoplasmic reticulum-Golgi complex vesicle transport pathway prevented p14 homomultimer formation, while lower pH disrupted p14 multimers. The p14 endodomain or transmembrane domains are not required for multimer formation, which, along with the pH sensitivity and the distribution of histidine residues, suggests the 36 aa p14 ectodomain is a multimerization motif.
UR - http://www.scopus.com/inward/record.url?scp=78651243438&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=78651243438&partnerID=8YFLogxK
U2 - 10.1099/vir.0.026013-0
DO - 10.1099/vir.0.026013-0
M3 - Article
C2 - 20861318
AN - SCOPUS:78651243438
SN - 0022-1317
VL - 92
SP - 162
EP - 166
JO - Journal of General Virology
JF - Journal of General Virology
IS - 1
ER -