TY - JOUR
T1 - Metabolism and energetics in squid (Illex illecebrosus, Loligo pealei) during muscular fatigue and recovery
AU - Portner, H. O.
AU - Webber, D. M.
AU - O'Dor, R. K.
AU - Boutilier, R. G.
PY - 1993
Y1 - 1993
N2 - The concentrations of intermediate and end products of anaerobic energy metabolism and of free amino acids were determined in mantle musculature and blood sampled from cannulated, unrestrained squid (Loligo pealei, Illex illecebrosus) under control conditions, after fatigue from increasing levels of exercise, and during postexercise recovery. Phosphagen depletion, accumulation of octopine (more so in Illex than in Loligo), and accumulation of succinate indicate that anaerobic metabolism contributes to energy production before fatigue. Proline was a substrate of metabolism in Loligo, as indicated by its depletion in the mantle. In both species, there was no evidence of catabolism of ATP beyond AMP. A comparison of the changes in the free and total levels of adenylates and the phosphagen indicates an earlier detrimental effect of fatigue on the energy status in Loligo. The acidosis provoked by octopine formation in Illex was demonstrated to promote the use of the phosphagen and to protect the free energy change of ATP such that the anaerobic scope of metabolism during swimming is extended and expressed more in Illex than in Loligo. In both species, there was no decrease in the sum of phospho-L-arginine, octopine, and L-arginine, and thus no release of octopine from the mantle, thereby supporting our earlier claim that octopine and associated protons are recycled in the mantle tissue. Overall, the metabolic strategy of Loligo is much less disturbing for the acid-base status. This strategy and the alternative strategy of Illex to keep acidifying protons in the tissue may be important for the protection of hemocyanin function in the two species.
AB - The concentrations of intermediate and end products of anaerobic energy metabolism and of free amino acids were determined in mantle musculature and blood sampled from cannulated, unrestrained squid (Loligo pealei, Illex illecebrosus) under control conditions, after fatigue from increasing levels of exercise, and during postexercise recovery. Phosphagen depletion, accumulation of octopine (more so in Illex than in Loligo), and accumulation of succinate indicate that anaerobic metabolism contributes to energy production before fatigue. Proline was a substrate of metabolism in Loligo, as indicated by its depletion in the mantle. In both species, there was no evidence of catabolism of ATP beyond AMP. A comparison of the changes in the free and total levels of adenylates and the phosphagen indicates an earlier detrimental effect of fatigue on the energy status in Loligo. The acidosis provoked by octopine formation in Illex was demonstrated to promote the use of the phosphagen and to protect the free energy change of ATP such that the anaerobic scope of metabolism during swimming is extended and expressed more in Illex than in Loligo. In both species, there was no decrease in the sum of phospho-L-arginine, octopine, and L-arginine, and thus no release of octopine from the mantle, thereby supporting our earlier claim that octopine and associated protons are recycled in the mantle tissue. Overall, the metabolic strategy of Loligo is much less disturbing for the acid-base status. This strategy and the alternative strategy of Illex to keep acidifying protons in the tissue may be important for the protection of hemocyanin function in the two species.
UR - http://www.scopus.com/inward/record.url?scp=0027293313&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0027293313&partnerID=8YFLogxK
U2 - 10.1152/ajpregu.1993.265.1.r157
DO - 10.1152/ajpregu.1993.265.1.r157
M3 - Article
C2 - 8342682
AN - SCOPUS:0027293313
SN - 0002-9513
VL - 265
SP - R157-R165
JO - American Journal of Physiology - Regulatory Integrative and Comparative Physiology
JF - American Journal of Physiology - Regulatory Integrative and Comparative Physiology
IS - 1 34-1
ER -