TY - JOUR
T1 - Microarray analysis of Myf5-/-:MyoD-/- hypoplastic mouse lungs reveals a profile of genes involved in pneumocyte differentiation
AU - Baguma-Nibasheka, M.
AU - Angka, H. E.
AU - Inanlou, M. R.
AU - Kablar, Boris
PY - 2007/4
Y1 - 2007/4
N2 - Fetal breathing-like movements (FBMs) are important in normal lung growth and pneumocyte differentiation. In amyogenic mouse embryos (designated as Myf5-/-:MyoD-/-, entirely lacking skeletal musculature and FBMs), type II pneumocytes fail to differentiate into type I pneumocytes, the cells responsible for gas exchange, and the fetuses die from asphyxia at birth. Using oligonucleotide microarrays, we compared gene expression in the lungs of Myf5-/- :MyoD-/- embryos to that in normal lungs at term. Nine genes were found to be up-regulated and 54 down-regulated at least 2-fold in the lungs of double-mutant embryos. Since many down-regulated genes are involved in lymphocyte function, immunohistochemistry was employed to study T- and B-cell maturity in the thymus and spleen. Our findings of normal lymphocyte maturity implied that the down-regulation was specific to the double-mutant lung phenotype and not to its immune system. Immunostaining also revealed altered distribution of transcription and growth factors (SATB 1, c-Myb, CTGF) from down-regulated genes whose knockouts are now known to undergo embryonic or neonatal death secondary to respiratory failure. Together, it appears that microarray analysis has identified a profile of genes potentially involved in pneumocyte differentiation and therefore in the mechanisms that may be implicated in the mechanochemical signal transduction pathways underlying FBMs-dependent pulmonary hypoplasia.
AB - Fetal breathing-like movements (FBMs) are important in normal lung growth and pneumocyte differentiation. In amyogenic mouse embryos (designated as Myf5-/-:MyoD-/-, entirely lacking skeletal musculature and FBMs), type II pneumocytes fail to differentiate into type I pneumocytes, the cells responsible for gas exchange, and the fetuses die from asphyxia at birth. Using oligonucleotide microarrays, we compared gene expression in the lungs of Myf5-/- :MyoD-/- embryos to that in normal lungs at term. Nine genes were found to be up-regulated and 54 down-regulated at least 2-fold in the lungs of double-mutant embryos. Since many down-regulated genes are involved in lymphocyte function, immunohistochemistry was employed to study T- and B-cell maturity in the thymus and spleen. Our findings of normal lymphocyte maturity implied that the down-regulation was specific to the double-mutant lung phenotype and not to its immune system. Immunostaining also revealed altered distribution of transcription and growth factors (SATB 1, c-Myb, CTGF) from down-regulated genes whose knockouts are now known to undergo embryonic or neonatal death secondary to respiratory failure. Together, it appears that microarray analysis has identified a profile of genes potentially involved in pneumocyte differentiation and therefore in the mechanisms that may be implicated in the mechanochemical signal transduction pathways underlying FBMs-dependent pulmonary hypoplasia.
UR - http://www.scopus.com/inward/record.url?scp=34247491607&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=34247491607&partnerID=8YFLogxK
M3 - Article
C2 - 17330803
AN - SCOPUS:34247491607
SN - 0213-3911
VL - 22
SP - 483
EP - 495
JO - Histology and Histopathology
JF - Histology and Histopathology
IS - 4-6
ER -