Multiscale interactome analysis coupled with off-target drug predictions reveals drug repurposing candidates for human coronavirus disease

Michael G. Sugiyama, Haotian Cui, Dar’ya S. Redka, Mehran Karimzadeh, Edurne Rujas, Hassaan Maan, Sikander Hayat, Kyle Cheung, Rahul Misra, Joseph B. McPhee, Russell D. Viirre, Andrew Haller, Roberto J. Botelho, Raffi Karshafian, Sarah A. Sabatinos, Gregory D. Fairn, Seyed Ali Madani Tonekaboni, Andreas Windemuth, Jean Philippe Julien, Vijay ShahaniStephen S. MacKinnon, Bo Wang, Costin N. Antonescu

Research output: Contribution to journalArticlepeer-review

14 Citations (Scopus)

Abstract

The COVID-19 pandemic has highlighted the urgent need for the identification of new antiviral drug therapies for a variety of diseases. COVID-19 is caused by infection with the human coronavirus SARS-CoV-2, while other related human coronaviruses cause diseases ranging from severe respiratory infections to the common cold. We developed a computational approach to identify new antiviral drug targets and repurpose clinically-relevant drug compounds for the treatment of a range of human coronavirus diseases. Our approach is based on graph convolutional networks (GCN) and involves multiscale host-virus interactome analysis coupled to off-target drug predictions. Cell-based experimental assessment reveals several clinically-relevant drug repurposing candidates predicted by the in silico analyses to have antiviral activity against human coronavirus infection. In particular, we identify the MET inhibitor capmatinib as having potent and broad antiviral activity against several coronaviruses in a MET-independent manner, as well as novel roles for host cell proteins such as IRAK1/4 in supporting human coronavirus infection, which can inform further drug discovery studies.

Original languageEnglish
Article number23315
JournalScientific Reports
Volume11
Issue number1
DOIs
Publication statusPublished - Dec 2021
Externally publishedYes

Bibliographical note

Funding Information:
We gratefully acknowledge funding that supported this research support from the Ryerson University Faculty of Science (CNA), as well as funding support in the form of a CIFAR Catalyst Grant (JPJ and CNA), an NSERC Alliance Grant (CNA) and the Ryerson COVID-19 SRC Response Fund award (CNA). BW is partly supported by CIFAR AI Chairs Program. This work was also supported by a Mitacs award (BW), the European Union’s Horizon 2020 research and innovation program under a Marie Sklodowska-Curie grant (ER), by the CIFAR Azrieli Global Scholar program (JPJ), by the Ontario Early Researcher Awards program (JPJ and CNA), and by the Canada Research Chairs program (JPJ). We also thank Dr. James Rini (University of Toronto) for the kind gift of the 9.8E12 antibody used to detect the 229E Spike protein, and Dr. Scott Gray-Owen (University of Toronto) for the kind gift of the NL63 human coronavirus.

Publisher Copyright:
© 2021, The Author(s).

ASJC Scopus Subject Areas

  • General

PubMed: MeSH publication types

  • Journal Article
  • Research Support, Non-U.S. Gov't

Fingerprint

Dive into the research topics of 'Multiscale interactome analysis coupled with off-target drug predictions reveals drug repurposing candidates for human coronavirus disease'. Together they form a unique fingerprint.

Cite this