Passage through Tetrahymena tropicalis triggers a rapid morphological differentiation in Legionella pneumophila

Gary Faulkner, Sharon G. Berk, Elizabeth Garduño, Marco A. Ortiz-Jiménez, Rafael A. Garduño

Research output: Contribution to journalArticlepeer-review

48 Citations (Scopus)

Abstract

The intracellular bacterial pathogen Legionella pneumophila follows a developmental cycle in which replicative forms (RFs) differentiate into infectious stationary-phase forms (SPFs) in vitro and in vivo into highly infectious mature intracellular forms (MIFs). The potential relationships between SPFs and MIFs remain uncharacterized. Previously we determined that L. pneumophila survives, but does not replicate, while it transiently resides (for 1 to 2 h) in food vacuoles of the freshwater ciliate Tetrahymena tropicalis before being expelled as legionellae-laden pellets. We report here that SPFs have the ability to rapidly (<1 h) and directly (in the absence of bacterial replication) differentiate into MIFs while in transit through T. tropicalis, indicating that SPFs and MIFs constitute a differentiation continuum. Mutant RFs lacking the sigma factor gene rpoS, or the response regulator gene letA, were unable to produce normal SPFs in vitro and did not fully differentiate into MIFs in vivo, further supporting the existence of a common mechanism of differentiation shared by SPFs and MIFs. Mutants with a defective Dot/Icm system morphologically differentiated into MIFs while in transit through T. tropicalis. Therefore, T. tropicalis has allowed us to unequivocally conclude that SPFs can directly differentiate into MIFs and that the Dot/Icm system is not required for differentiation, two events that could not be experimentally addressed before. The Tetrahymena model can now be exploited to study the signals that trigger MIF development in vivo and is the only replication-independent model reported to date that allows the differentiation of Dot/Icm mutants into MIFs.

Original languageEnglish
Pages (from-to)7728-7738
Number of pages11
JournalJournal of Bacteriology
Volume190
Issue number23
DOIs
Publication statusPublished - Dec 2008

ASJC Scopus Subject Areas

  • Microbiology
  • Molecular Biology

PubMed: MeSH publication types

  • Journal Article
  • Research Support, Non-U.S. Gov't

Fingerprint

Dive into the research topics of 'Passage through Tetrahymena tropicalis triggers a rapid morphological differentiation in Legionella pneumophila'. Together they form a unique fingerprint.

Cite this