TY - JOUR
T1 - Pharmacological separation of hEAG and hERG K+ channel function in the human mammary carcinoma cell line MCF-7
AU - Roy, Jeremy
AU - Vantol, Brenna
AU - Cowley, Elizabeth A.
AU - Blay, Jonathan
AU - Linsdell, Paul
PY - 2008/6
Y1 - 2008/6
N2 - Pharmacological inhibitors of the human ether-a-go-go (hEAG) potassium channel, astemizole and imipramine, have been used to demonstrate that hEAG plays a role in cancer cell proliferation. Astemizole and imipramine are, however, relatively non-specific ion channel blockers, as astemizole can also block the related potassium channel, human ether-a-go-go-related (hERG). Therefore, we aimed to determine the molecular target of astemizole, in the human mammary carcinoma cell line MCF-7. We initially confirmed the expression of KCNH1 and KCNH2 mRNA and hEAG and hERG channel protein in MCF-7 cells. Using a [3H]-thymidine incorporation assay we determined that astemizole inhibited MCF-7 cell proliferation, whereas the hERG-specific channel blocker E-4031 had no effect. We then determined that E-4031 inhibited the regulatory volume decrease (RVD) observed in these cells following exposure to hypotonic solutions, confirming that functional hERG channels are present and may be important for cell volume regulation in MCF-7 cells. Our results suggest, for the first time, that hERG is involved in cell volume regulation. In addition, the function of hEAG and hERG in MCF-7 cell proliferation can be separated pharmacologically by utilizing the channel inhibitors astemizole and E-4031. The hEAG channel function in MCF-7 cells appears to be involved in the regulation of cell proliferation, whereas hERG is involved in cell volume regulation.
AB - Pharmacological inhibitors of the human ether-a-go-go (hEAG) potassium channel, astemizole and imipramine, have been used to demonstrate that hEAG plays a role in cancer cell proliferation. Astemizole and imipramine are, however, relatively non-specific ion channel blockers, as astemizole can also block the related potassium channel, human ether-a-go-go-related (hERG). Therefore, we aimed to determine the molecular target of astemizole, in the human mammary carcinoma cell line MCF-7. We initially confirmed the expression of KCNH1 and KCNH2 mRNA and hEAG and hERG channel protein in MCF-7 cells. Using a [3H]-thymidine incorporation assay we determined that astemizole inhibited MCF-7 cell proliferation, whereas the hERG-specific channel blocker E-4031 had no effect. We then determined that E-4031 inhibited the regulatory volume decrease (RVD) observed in these cells following exposure to hypotonic solutions, confirming that functional hERG channels are present and may be important for cell volume regulation in MCF-7 cells. Our results suggest, for the first time, that hERG is involved in cell volume regulation. In addition, the function of hEAG and hERG in MCF-7 cell proliferation can be separated pharmacologically by utilizing the channel inhibitors astemizole and E-4031. The hEAG channel function in MCF-7 cells appears to be involved in the regulation of cell proliferation, whereas hERG is involved in cell volume regulation.
UR - http://www.scopus.com/inward/record.url?scp=48849089075&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=48849089075&partnerID=8YFLogxK
M3 - Article
C2 - 18497958
AN - SCOPUS:48849089075
SN - 1021-335X
VL - 19
SP - 1511
EP - 1516
JO - Oncology Reports
JF - Oncology Reports
IS - 6
ER -