Plant immunity triggered by engineered in vivo release of oligogalacturonides, damage-associated molecular patterns

Manuel Benedetti, Daniela Pontiggia, Sara Raggi, Zhenyu Cheng, Flavio Scaloni, Simone Ferrari, Frederick M. Ausubel, Felice Cervone, Giulia De Lorenzo

Research output: Contribution to journalArticlepeer-review

175 Citations (Scopus)

Abstract

Oligogalacturonides (OGs) are fragments of pectin that activate plant innate immunity by functioning as damage-associated molecular patterns (DAMPs). We set out to test the hypothesis that OGs are generated in planta by partial inhibition of pathogen-encoded polygalacturonases (PGs). A gene encoding a fungal PG was fused with a gene encoding a plant polygalacturonase-inhibiting protein (PGIP) and expressed in transgenic Arabidopsis plants. We show that expression of the PGIP-PG chimera results in the in vivo production of OGs that can be detected by mass spectrometric analysis. Transgenic plants expressing the chimera under control of a patho-gen- inducible promoter are more resistant to the phytopathogens Botrytis cinerea, Pectobacterium carotovorum, and Pseudomonas syringae. These data provide strong evidence for the hypothesis that OGs released in vivo act as a DAMP signal to trigger plant immunity and suggest that controlled release of these molecules upon infection may be a valuable tool to protect plants against infectious diseases. On the other hand, elevated levels of expression of the chimera cause the accumulation of salicylic acid, reduced growth, and eventually lead to plant death, consistent with the current notion that trade-off occurs between growth and defense.

Original languageEnglish
Pages (from-to)5533-5538
Number of pages6
JournalProceedings of the National Academy of Sciences of the United States of America
Volume112
Issue number17
DOIs
Publication statusPublished - Apr 28 2015
Externally publishedYes

Bibliographical note

Publisher Copyright:
© 2015, National Academy of Sciences. All rights reserved.

ASJC Scopus Subject Areas

  • General

Fingerprint

Dive into the research topics of 'Plant immunity triggered by engineered in vivo release of oligogalacturonides, damage-associated molecular patterns'. Together they form a unique fingerprint.

Cite this