Abstract
Porous rods (6mm in length and 4mm in diameter) of calcium polyphosphate (CPP) made by gravity sintering of particles in the size ranges of 45-105, 105-150, and 150-250μm and with initial volume percent porosity in the range of 35-45% were implanted in the distal femur of New Zealand white rabbits. In an initial experiment, four rabbits implanted with rods made from coarse particles (150-250μm) were sacrificed at each of the following time points: 2 days, 2 weeks, 6 weeks and 12 weeks. In a subsequent experiment, 10 rabbits were implanted with rods made by sintering 45-105μm particles and another 10 were made by using particles of 105-150μm. These rabbits were sacrificed at 6 weeks (five rabbits) and 1 year (five rabbits). No adverse reaction was found histologically at any time point in either experiment. These experiments show that CPP macroporous rods can support bone ingrowth and that between 12 weeks and 1 year, the amount of bones formed is equivalent to the natural bone volume found at similar sites. The degradation of the CPP material is inversely proportional to the original particle size and is rapid initially (within the first 6 weeks) and slows down thereafter. In conclusion, this material seems to promote rapid bone ingrowth and can be tailored to degrade at a given rate in vivo to some degree through appropriate selection of the starting particle size.
Original language | English |
---|---|
Pages (from-to) | 2063-2070 |
Number of pages | 8 |
Journal | Biomaterials |
Volume | 23 |
Issue number | 9 |
DOIs | |
Publication status | Published - 2002 |
Externally published | Yes |
Bibliographical note
Funding Information:This study was supported by a grant from the National Science and Engineering Council of Canada.
ASJC Scopus Subject Areas
- Bioengineering
- Ceramics and Composites
- Biophysics
- Biomaterials
- Mechanics of Materials