Stone, W., Nunes, A., Akiyama, K., Akula, N., Ardau, R., Aubry, J. M., Backlund, L., Bauer, M., Bellivier, F., Cervantes, P., Chen, H. C., Chillotti, C., Cruceanu, C., Dayer, A., Degenhardt, F., Del Zompo, M., Forstner, A. J., Frye, M., Fullerton, J. M., ... Alda, M. (2021). Prediction of lithium response using genomic data. Scientific Reports, 11(1), Article 1155. https://doi.org/10.1038/s41598-020-80814-z
Stone, W, Nunes, A, Akiyama, K, Akula, N, Ardau, R, Aubry, JM, Backlund, L, Bauer, M, Bellivier, F, Cervantes, P, Chen, HC, Chillotti, C, Cruceanu, C, Dayer, A, Degenhardt, F, Del Zompo, M, Forstner, AJ, Frye, M, Fullerton, JM, Grigoroiu-Serbanescu, M, Grof, P, Hashimoto, R, Hou, L, Jiménez, E, Kato, T, Kelsoe, J, Kittel-Schneider, S, Kuo, PH, Kusumi, I, Lavebratt, C, Manchia, M, Martinsson, L, Mattheisen, M, McMahon, FJ, Millischer, V, Mitchell, PB, Nöthen, MM, O’Donovan, C, Ozaki, N, Pisanu, C, Reif, A, Rietschel, M, Rouleau, G, Rybakowski, J, Schalling, M, Schofield, PR, Schulze, TG, Severino, G, Squassina, A, Veeh, J, Vieta, E, Trappenberg, T & Alda, M 2021, 'Prediction of lithium response using genomic data', Scientific Reports, vol. 11, no. 1, 1155. https://doi.org/10.1038/s41598-020-80814-z
@article{928a704324884a52981e74d4a6777495,
title = "Prediction of lithium response using genomic data",
abstract = "Predicting lithium response prior to treatment could both expedite therapy and avoid exposure to side effects. Since lithium responsiveness may be heritable, its predictability based on genomic data is of interest. We thus evaluate the degree to which lithium response can be predicted with a machine learning (ML) approach using genomic data. Using the largest existing genomic dataset in the lithium response literature (n = 2210 across 14 international sites; 29% responders), we evaluated the degree to which lithium response could be predicted based on 47,465 genotyped single nucleotide polymorphisms using a supervised ML approach. Under appropriate cross-validation procedures, lithium response could be predicted to above-chance levels in two constituent sites (Halifax, Cohen{\textquoteright}s kappa 0.15, 95% confidence interval, CI [0.07, 0.24]; and W{\"u}rzburg, kappa 0.2 [0.1, 0.3]). Variants with shared importance in these models showed over-representation of postsynaptic membrane related genes. Lithium response was not predictable in the pooled dataset (kappa 0.02 [− 0.01, 0.04]), although non-trivial performance was achieved within a restricted dataset including only those patients followed prospectively (kappa 0.09 [0.04, 0.14]). Genomic classification of lithium response remains a promising but difficult task. Classification performance could potentially be improved by further harmonization of data collection procedures.",
author = "William Stone and Abraham Nunes and Kazufumi Akiyama and Nirmala Akula and Raffaella Ardau and Aubry, {Jean Michel} and Lena Backlund and Michael Bauer and Frank Bellivier and Pablo Cervantes and Chen, {Hsi Chung} and Caterina Chillotti and Cristiana Cruceanu and Alexandre Dayer and Franziska Degenhardt and {Del Zompo}, Maria and Forstner, {Andreas J.} and Mark Frye and Fullerton, {Janice M.} and Maria Grigoroiu-Serbanescu and Paul Grof and Ryota Hashimoto and Liping Hou and Esther Jim{\'e}nez and Tadafumi Kato and John Kelsoe and Sarah Kittel-Schneider and Kuo, {Po Hsiu} and Ichiro Kusumi and Catharina Lavebratt and Mirko Manchia and Lina Martinsson and Manuel Mattheisen and McMahon, {Francis J.} and Vincent Millischer and Mitchell, {Philip B.} and N{\"o}then, {Markus M.} and Claire O{\textquoteright}Donovan and Norio Ozaki and Claudia Pisanu and Andreas Reif and Marcella Rietschel and Guy Rouleau and Janusz Rybakowski and Martin Schalling and Schofield, {Peter R.} and Schulze, {Thomas G.} and Giovanni Severino and Alessio Squassina and Julia Veeh and Eduard Vieta and Thomas Trappenberg and Martin Alda",
note = "Funding Information: Genome Canada RP3 Program Grant and Research Nova Scotia (Alda, Mattheisen, Nunes), Canadian Institutes of Health Research (#166098; Alda, Mattheisen, Nunes), ERA PerMed Program (Grant PLOT-BD; Alda, Mat-theisen), Nova Scotia Health Research Foundation Scotia Scholars PhD Award (Nunes), Killam Postgraduate Scholarship (Nunes), Swiss National Science Foundation Grant (Synapsy 51NF40-185897; Aubry, Dayer), UEFIS-CDI Grant No. 89/2012 (Grigoroiu-Serbanescu) INNOBRAIN (Jim{\'e}nez), Australian NHRMC Program Grant 1037196 (Mitchell), Fondazione Umberto Veronesi (Pisanu), Taiwan National Health Research Institutes Grant (NHRI-EX107-10627NI) and Ministry of Science and Technology Grant (MOST 105-2628-B-002-028-MY3) (Po-Hsiu), Natural Sciences and Engineering Research Council of Canada (Trappenberg), Spanish Ministry of Science, Innovation and Universities (PI15/00283; Vieta) integrated into the Plan Nacional de I+D+I y cofinan-ciado por el ISCIII-Subdirecci{\'o}n General de Evaluaci{\'o}n y el Fondo Europeo de Desarrollo Regional (FEDER), CIBERSAM (Vieta), Comissionat per a Universitats i Recerca del DIUE de la Generalitat de Catalunya to the Bipolar Disorders Group (2017 SGR 1365; Vieta), Spanish Department de Salut (SLT006/17/00357 from PERIS 2016-2020; Vieta), CERCA Programme/Generalitat de Catalunya (Vieta). Publisher Copyright: {\textcopyright} 2021, The Author(s).",
year = "2021",
month = dec,
doi = "10.1038/s41598-020-80814-z",
language = "English",
volume = "11",
journal = "Scientific Reports",
issn = "2045-2322",
publisher = "Nature Publishing Group",
number = "1",
}
TY - JOUR
T1 - Prediction of lithium response using genomic data
AU - Stone, William
AU - Nunes, Abraham
AU - Akiyama, Kazufumi
AU - Akula, Nirmala
AU - Ardau, Raffaella
AU - Aubry, Jean Michel
AU - Backlund, Lena
AU - Bauer, Michael
AU - Bellivier, Frank
AU - Cervantes, Pablo
AU - Chen, Hsi Chung
AU - Chillotti, Caterina
AU - Cruceanu, Cristiana
AU - Dayer, Alexandre
AU - Degenhardt, Franziska
AU - Del Zompo, Maria
AU - Forstner, Andreas J.
AU - Frye, Mark
AU - Fullerton, Janice M.
AU - Grigoroiu-Serbanescu, Maria
AU - Grof, Paul
AU - Hashimoto, Ryota
AU - Hou, Liping
AU - Jiménez, Esther
AU - Kato, Tadafumi
AU - Kelsoe, John
AU - Kittel-Schneider, Sarah
AU - Kuo, Po Hsiu
AU - Kusumi, Ichiro
AU - Lavebratt, Catharina
AU - Manchia, Mirko
AU - Martinsson, Lina
AU - Mattheisen, Manuel
AU - McMahon, Francis J.
AU - Millischer, Vincent
AU - Mitchell, Philip B.
AU - Nöthen, Markus M.
AU - O’Donovan, Claire
AU - Ozaki, Norio
AU - Pisanu, Claudia
AU - Reif, Andreas
AU - Rietschel, Marcella
AU - Rouleau, Guy
AU - Rybakowski, Janusz
AU - Schalling, Martin
AU - Schofield, Peter R.
AU - Schulze, Thomas G.
AU - Severino, Giovanni
AU - Squassina, Alessio
AU - Veeh, Julia
AU - Vieta, Eduard
AU - Trappenberg, Thomas
AU - Alda, Martin
N1 - Funding Information:
Genome Canada RP3 Program Grant and Research Nova Scotia (Alda, Mattheisen, Nunes), Canadian Institutes of Health Research (#166098; Alda, Mattheisen, Nunes), ERA PerMed Program (Grant PLOT-BD; Alda, Mat-theisen), Nova Scotia Health Research Foundation Scotia Scholars PhD Award (Nunes), Killam Postgraduate Scholarship (Nunes), Swiss National Science Foundation Grant (Synapsy 51NF40-185897; Aubry, Dayer), UEFIS-CDI Grant No. 89/2012 (Grigoroiu-Serbanescu) INNOBRAIN (Jiménez), Australian NHRMC Program Grant 1037196 (Mitchell), Fondazione Umberto Veronesi (Pisanu), Taiwan National Health Research Institutes Grant (NHRI-EX107-10627NI) and Ministry of Science and Technology Grant (MOST 105-2628-B-002-028-MY3) (Po-Hsiu), Natural Sciences and Engineering Research Council of Canada (Trappenberg), Spanish Ministry of Science, Innovation and Universities (PI15/00283; Vieta) integrated into the Plan Nacional de I+D+I y cofinan-ciado por el ISCIII-Subdirección General de Evaluación y el Fondo Europeo de Desarrollo Regional (FEDER), CIBERSAM (Vieta), Comissionat per a Universitats i Recerca del DIUE de la Generalitat de Catalunya to the Bipolar Disorders Group (2017 SGR 1365; Vieta), Spanish Department de Salut (SLT006/17/00357 from PERIS 2016-2020; Vieta), CERCA Programme/Generalitat de Catalunya (Vieta).
Publisher Copyright:
© 2021, The Author(s).
PY - 2021/12
Y1 - 2021/12
N2 - Predicting lithium response prior to treatment could both expedite therapy and avoid exposure to side effects. Since lithium responsiveness may be heritable, its predictability based on genomic data is of interest. We thus evaluate the degree to which lithium response can be predicted with a machine learning (ML) approach using genomic data. Using the largest existing genomic dataset in the lithium response literature (n = 2210 across 14 international sites; 29% responders), we evaluated the degree to which lithium response could be predicted based on 47,465 genotyped single nucleotide polymorphisms using a supervised ML approach. Under appropriate cross-validation procedures, lithium response could be predicted to above-chance levels in two constituent sites (Halifax, Cohen’s kappa 0.15, 95% confidence interval, CI [0.07, 0.24]; and Würzburg, kappa 0.2 [0.1, 0.3]). Variants with shared importance in these models showed over-representation of postsynaptic membrane related genes. Lithium response was not predictable in the pooled dataset (kappa 0.02 [− 0.01, 0.04]), although non-trivial performance was achieved within a restricted dataset including only those patients followed prospectively (kappa 0.09 [0.04, 0.14]). Genomic classification of lithium response remains a promising but difficult task. Classification performance could potentially be improved by further harmonization of data collection procedures.
AB - Predicting lithium response prior to treatment could both expedite therapy and avoid exposure to side effects. Since lithium responsiveness may be heritable, its predictability based on genomic data is of interest. We thus evaluate the degree to which lithium response can be predicted with a machine learning (ML) approach using genomic data. Using the largest existing genomic dataset in the lithium response literature (n = 2210 across 14 international sites; 29% responders), we evaluated the degree to which lithium response could be predicted based on 47,465 genotyped single nucleotide polymorphisms using a supervised ML approach. Under appropriate cross-validation procedures, lithium response could be predicted to above-chance levels in two constituent sites (Halifax, Cohen’s kappa 0.15, 95% confidence interval, CI [0.07, 0.24]; and Würzburg, kappa 0.2 [0.1, 0.3]). Variants with shared importance in these models showed over-representation of postsynaptic membrane related genes. Lithium response was not predictable in the pooled dataset (kappa 0.02 [− 0.01, 0.04]), although non-trivial performance was achieved within a restricted dataset including only those patients followed prospectively (kappa 0.09 [0.04, 0.14]). Genomic classification of lithium response remains a promising but difficult task. Classification performance could potentially be improved by further harmonization of data collection procedures.
UR - http://www.scopus.com/inward/record.url?scp=85099339219&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85099339219&partnerID=8YFLogxK
U2 - 10.1038/s41598-020-80814-z
DO - 10.1038/s41598-020-80814-z
M3 - Article
C2 - 33441847
AN - SCOPUS:85099339219
SN - 2045-2322
VL - 11
JO - Scientific Reports
JF - Scientific Reports
IS - 1
M1 - 1155
ER -