Reduced nuclear genomes maintain high gene transcription levels

Goro Tanifuji, Naoko T. Onodera, Christa E. Moore, John M. Archibald

Research output: Contribution to journalArticlepeer-review

18 Citations (Scopus)

Abstract

Reductive genome evolution is seen in organisms living in close association with each other, such as in endosymbiosis, symbiosis, and parasitism. The reduced genomes of endosymbionts and parasites often exhibit similar features such as high gene densities and A+T compositional bias. Little is known about how the regulation of gene expression has been affected in organisms with highly compacted genomes. We studied gene transcription patterns in "nucleomorph" genomes, which are relic nuclear genomes of algal endosymbionts found in cryptophytes and chlorarachniophytes. We examined nuclear and nucleomorph gene transcription patterns using RNA-Seq transcriptome and genome mapping analyses in representatives of both lineages. In all four examined genomes, the most highly transcribed nucleomorph gene category was found to be plastid-associated genes. Remarkably, only 0.49-3.37% of the nucleomorph genomes of these organisms did not have any mRNA counterpart in our RNA-Seq data sets, and nucleomorph genes show equal or higher levels of transcription than their counterparts in the nuclear genomes. We hypothesize that elevated levels of nucleomorph gene transcription may serve to counteract the degradation or modification of protein function due to the loss of interacting proteins in the nucleomorph and nucleomorph-associated subcellular compartments.

Original languageEnglish
Pages (from-to)625-635
Number of pages11
JournalMolecular Biology and Evolution
Volume31
Issue number3
DOIs
Publication statusPublished - Mar 2014

ASJC Scopus Subject Areas

  • Ecology, Evolution, Behavior and Systematics
  • Molecular Biology
  • Genetics

Fingerprint

Dive into the research topics of 'Reduced nuclear genomes maintain high gene transcription levels'. Together they form a unique fingerprint.

Cite this