Abstract
The current paper is a continuation of our work described in Rot and Kablar, 2010. Here, we show lists of 10 up- and 87 down-regulated genes obtained by a cDNA microarray analysis that compared developing Myf5-/-:Myod-/- (and Mrf4-/-) petrous part of the temporal bone, containing middle and inner ear, to the control, at embryonic day 18.5. Myf5-/-:Myod-/- fetuses entirely lack skeletal myoblasts and muscles. They are unable to move their head, which interferes with the perception of angular acceleration. Previously, we showed that the inner ear areas most affected in Myf5-/-:Myod-/- fetuses were the vestibular cristae ampullaris, sensitive to angular acceleration. Our finding that the type I hair cells were absent in the mutants’ cristae was further used here to identify a profile of genes specific to the lacking cell type. Microarrays followed by a detailed consultation of web-accessible mouse databases allowed us to identify 6 candidate genes with a possible role in the development of the inner ear sensory organs: Actc1, Pgam2, Ldb3, Eno3, Hspb7 and Smpx. Additionally, we searched for human homologues of the candidate genes since a number of syndromes in humans have associated inner ear abnormalities. Mutations in one of our candidate genes, Smpx, have been reported as the cause of X-linked deafness in humans. Our current study suggests an epigenetic role that mechanical, and potentially other, stimuli originating from muscle, play in organogenesis, and offers an approach to finding novel genes responsible for altered inner ear phenotypes.
Original language | English |
---|---|
Pages (from-to) | 987-1000 |
Number of pages | 14 |
Journal | Histology and Histopathology |
Volume | 32 |
Issue number | 10 |
DOIs | |
Publication status | Published - 2017 |
Bibliographical note
Funding Information:We thank Heather E. Angka for her expertise with the experimental procedures and Dr. Bruce Greenfield for critical reading of the manuscript. This work was funded by an operating grant from NSERC and two infrastructure grants from Canada Foundation for Innovation (CFI) and Dalhousie Medical Research Foundation (DMRF) to BK.
Publisher Copyright:
© 2017, Histology and Histopathology. All rights reserved.
ASJC Scopus Subject Areas
- Pathology and Forensic Medicine
- Histology
PubMed: MeSH publication types
- Journal Article
- Review