The Micronesia Challenge: Assessing the relative contribution of stressors on coral reefs to facilitate science-to-management feedback

Peter Houk, Rodney Camacho, Steven Johnson, Matthew McLean, Selino Maxin, Jorg Anson, Eugene Joseph, Osamu Nedlic, Marston Luckymis, Katrina Adams, Don Hess, Emma Kabua, Anthony Yalon, Eva Buthung, Curtis Graham, Trina Leberer, Brett Taylor, Robert Van Woesik

Research output: Contribution to journalArticlepeer-review

46 Citations (Scopus)

Abstract

Fishing and pollution are chronic stressors that can prolong recovery of coral reefs and contribute to ecosystem decline. While this premise is generally accepted, management interventions are complicated because the contributions from individual stressors are difficult to distinguish. The present study examined the extent to which fishing pressure and pollution predicted progress towards the Micronesia Challenge, an international conservation strategy initiated by the political leaders of 6 nations to conserve at least 30% of marine resources by 2020. The analyses were rooted in a defined measure of coral-reef-ecosystem condition, comprised of biological metrics that described functional processes on coral reefs. We report that only 42% of the major reef habitats exceeded the ecosystem-condition threshold established by the Micronesia Challenge. Fishing pressure acting alone on outer reefs, or in combination with pollution in some lagoons, best predicted both the decline and variance in ecosystem condition. High variances among ecosystem-condition scores reflected the large gaps between the best and worst reefs, and suggested that the current scores were unlikely to remain stable through time because of low redundancy. Accounting for the presence of marine protected area (MPA) networks in statistical models did little to improve the models' predictive capabilities, suggesting limited efficacy of MPAs when grouped together across the region. Yet, localized benefits of MPAs existed and are expected to increase over time. Sensitivity analyses suggested that (i) grazing by large herbivores, (ii) high functional diversity of herbivores, and (iii) high predator biomass were most sensitive to fishing pressure, and were required for high ecosystem-condition scores. Linking comprehensive fisheries management policies with these sensitive metrics, and targeting the management of pollution, will strengthen the Micronesia Challenge and preserve ecosystem services that coral reefs provide to societies in the face of climate change.

Original languageEnglish
Article numbere0130823
JournalPLoS One
Volume10
Issue number6
DOIs
Publication statusPublished - Jun 18 2015
Externally publishedYes

Bibliographical note

Funding Information:
This study was funded by coral-reef monitoring and management grants administered to the Micronesian jurisdictions by the National Oceanic and Atmospheric Administration (NOAA) coral conservation program (NA11NOS482001), the David and Lucile Packard Foundation monitoring for decision support grant, and the Margaret A. Cargill Foundation small grants program administered by the Micronesia Conservation Trust. We are grateful for dedicated fieldwork efforts from numerous individuals associated with the local monitoring programs and the University of Guam Marine Laboratory, unfortunately their contributions were too numerous to list individually. We also thank members of the Micronesia Challenge marine measures group who provided constructive input at several stages during the manuscript development.

Publisher Copyright:
© 2015 Houk et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

ASJC Scopus Subject Areas

  • General

Fingerprint

Dive into the research topics of 'The Micronesia Challenge: Assessing the relative contribution of stressors on coral reefs to facilitate science-to-management feedback'. Together they form a unique fingerprint.

Cite this