TY - JOUR
T1 - Therapeutic effect of blocking CXCR2 on neutrophil recruitment and dextran sodium sulfate-induced colitis
AU - Farooq, Shukkur Muhammed
AU - Stillie, Rosemarie
AU - Svensson, Majlis
AU - Svanborg, Catharina
AU - Strieter, Robert M.
AU - Stadnyk, Andrew W.
PY - 2009/4
Y1 - 2009/4
N2 - Dextran sodium sulfate (DSS)-induced colitis in mice is characterized by polymorphonuclear neutrophil (PMN) infiltration into the colonic mucosa and lumen. The mechanism by which this occurs is unclear. To begin to understand the mechanism, we determined the role of the PMN chemokine receptor, CXCR2, in DSS-induced colitis by using CXCR2(-/-) mice or by neutralizing CXCR2. DSS was administered through drinking water to CXCR2(-/-) and BALB/c mice for 5 days followed by regular water for 1 day. In the neutralization study, mice were injected with control serum or goat anti-CXCR2 antiserum. BALB/c mice receiving DSS and control serum-injected mice receiving DSS lost weight and showed considerable clinical illness. Histological observation revealed submucosal edema, PMN infiltration into the submucosa and mucosa, extensive crypt damage with abscesses, and ulceration. In contrast, both the CXCR2(-/-) and anti-CXCR2 antiserum-treated mice gained weight and had significantly lower symptom scores. Histology of these mice showed submucosal edema but relatively intact crypt architecture and very few ulcers. Significantly fewer PMNs were found in the mucosa in anti-CXCR2 antiserum compared with control serum-injected inflamed mice, but no significant difference in eosinophil infiltration was observed between the groups. Our experiments identify a role forCXCR2 in DSS-induced colitis and suggest that antagonizing CXCR2 provides some therapeutic efficacy, possibly by impeding PMN recruitment into the mucosa. Antagonizing CXCR2 may form the basis for therapeutic drugs directed at controlling colitis.
AB - Dextran sodium sulfate (DSS)-induced colitis in mice is characterized by polymorphonuclear neutrophil (PMN) infiltration into the colonic mucosa and lumen. The mechanism by which this occurs is unclear. To begin to understand the mechanism, we determined the role of the PMN chemokine receptor, CXCR2, in DSS-induced colitis by using CXCR2(-/-) mice or by neutralizing CXCR2. DSS was administered through drinking water to CXCR2(-/-) and BALB/c mice for 5 days followed by regular water for 1 day. In the neutralization study, mice were injected with control serum or goat anti-CXCR2 antiserum. BALB/c mice receiving DSS and control serum-injected mice receiving DSS lost weight and showed considerable clinical illness. Histological observation revealed submucosal edema, PMN infiltration into the submucosa and mucosa, extensive crypt damage with abscesses, and ulceration. In contrast, both the CXCR2(-/-) and anti-CXCR2 antiserum-treated mice gained weight and had significantly lower symptom scores. Histology of these mice showed submucosal edema but relatively intact crypt architecture and very few ulcers. Significantly fewer PMNs were found in the mucosa in anti-CXCR2 antiserum compared with control serum-injected inflamed mice, but no significant difference in eosinophil infiltration was observed between the groups. Our experiments identify a role forCXCR2 in DSS-induced colitis and suggest that antagonizing CXCR2 provides some therapeutic efficacy, possibly by impeding PMN recruitment into the mucosa. Antagonizing CXCR2 may form the basis for therapeutic drugs directed at controlling colitis.
UR - http://www.scopus.com/inward/record.url?scp=63849209890&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=63849209890&partnerID=8YFLogxK
U2 - 10.1124/jpet.108.145862
DO - 10.1124/jpet.108.145862
M3 - Article
C2 - 19131582
AN - SCOPUS:63849209890
SN - 0022-3565
VL - 329
SP - 123
EP - 129
JO - Journal of Pharmacology and Experimental Therapeutics
JF - Journal of Pharmacology and Experimental Therapeutics
IS - 1
ER -