TY - JOUR
T1 - Toll-like receptor-4 regulation of hepatic Cyp3a11 metabolism in a mouse model of LPS-induced CNS inflammation
AU - Goralski, Kerry B.
AU - Abdulla, Dalya
AU - Sinal, Christopher J.
AU - Arsenault, Andre
AU - Renton, Kenneth W.
PY - 2005/9
Y1 - 2005/9
N2 - Central nervous system (CNS) infection and inflammation severely reduce the capacity of cytochrome P-450 metabolism in the liver. We developed a mouse model to examine the effects of CNS inflammation on hepatic cytochrome P-450 metabolism. FVB, C57BL/6, and C3H/HeouJ mice were given Escherichia coli LPS (2.5 μg) by intracerebroventricular (ICV) injection. The CNS inflammatory response was confirmed by the elevation of TNF-α and/or IL-1β proteins in the brain. In all mouse strains, LPS produced a 60-70% loss in hepatic Cyp3a11 expression and activity compared with saline-injected controls. Adrenalectomy did not prevent the loss in Cyp3a11 expression or activity, thereby precluding the involvement of the hypothalamic-adrenal-pituitary axis. Endotoxin was detectable (1-10 ng/ml) in serum between 15 and 120 rain after ICV dosing of 2.5 μg LPS. Peripheral administration of 2.5 μg LPS by intraperitoneal injection produced similar serum endotoxin levels and a similar loss (60%) in Cyp3a11 expression and activity in the liver. The loss of Cyp3a11 in response to centrally or peripherally administered LPS could not be evoked in Toll-like receptor-4 (TLR4)-mutant (C3H/ HeJ) mice, indicating that TLR4 signaling pathways are directly involved in the enzyme loss. In summary, we conclude that LPS is transferred from the brain to the circulation in significant quantities in a model of CNS infection or inflammation. Subsequently, LPS that has reached the circulation stimulates a TLR4-dependent mechanism in the periphery, evoking a reduction in Cyp3a11 expression and metabolism in the liver.
AB - Central nervous system (CNS) infection and inflammation severely reduce the capacity of cytochrome P-450 metabolism in the liver. We developed a mouse model to examine the effects of CNS inflammation on hepatic cytochrome P-450 metabolism. FVB, C57BL/6, and C3H/HeouJ mice were given Escherichia coli LPS (2.5 μg) by intracerebroventricular (ICV) injection. The CNS inflammatory response was confirmed by the elevation of TNF-α and/or IL-1β proteins in the brain. In all mouse strains, LPS produced a 60-70% loss in hepatic Cyp3a11 expression and activity compared with saline-injected controls. Adrenalectomy did not prevent the loss in Cyp3a11 expression or activity, thereby precluding the involvement of the hypothalamic-adrenal-pituitary axis. Endotoxin was detectable (1-10 ng/ml) in serum between 15 and 120 rain after ICV dosing of 2.5 μg LPS. Peripheral administration of 2.5 μg LPS by intraperitoneal injection produced similar serum endotoxin levels and a similar loss (60%) in Cyp3a11 expression and activity in the liver. The loss of Cyp3a11 in response to centrally or peripherally administered LPS could not be evoked in Toll-like receptor-4 (TLR4)-mutant (C3H/ HeJ) mice, indicating that TLR4 signaling pathways are directly involved in the enzyme loss. In summary, we conclude that LPS is transferred from the brain to the circulation in significant quantities in a model of CNS infection or inflammation. Subsequently, LPS that has reached the circulation stimulates a TLR4-dependent mechanism in the periphery, evoking a reduction in Cyp3a11 expression and metabolism in the liver.
UR - http://www.scopus.com/inward/record.url?scp=24044506254&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=24044506254&partnerID=8YFLogxK
U2 - 10.1152/ajpgi.00562.2004
DO - 10.1152/ajpgi.00562.2004
M3 - Article
C2 - 15878984
AN - SCOPUS:24044506254
SN - 0193-1857
VL - 289
SP - G434-G443
JO - American Journal of Physiology - Gastrointestinal and Liver Physiology
JF - American Journal of Physiology - Gastrointestinal and Liver Physiology
IS - 3 52-3
ER -