Abstract
The neuronal networks that generate vertebrate movements such as walking and swimming are embedded in the spinal cord1-3. These networks, which are referred to as central pattern generators (CPGs), are ideal systems for determining how ensembles of neurons generate simple behavioural outputs. In spite of efforts to address the organization of the locomotor CPG in walking animals2,4-6, little is known about the identity and function of the spinal interneuron cell types that contribute to these locomotor networks. Here we use four complementary genetic approaches to directly address the function of mouse V1 neurons, a class of local circuit inhibitory interneurons that selectively express the transcription factor Engrailedl. Our results show that V1 neurons shape motor outputs during locomotion and are required for generating 'fast' motor bursting. These findings outline an important role for inhibition in regulating the frequency of the locomotor CPG rhythm, and also suggest that V1 neurons may have an evolutionarily conserved role in controlling the speed of vertebrate locomotor movements.
Original language | English |
---|---|
Pages (from-to) | 215-219 |
Number of pages | 5 |
Journal | Nature |
Volume | 440 |
Issue number | 7081 |
DOIs | |
Publication status | Published - Mar 9 2006 |
Externally published | Yes |
Bibliographical note
Funding Information:Acknowledgements We thank J. Rivier for the allatostatin peptide, P. Gruss and A. Mansouri for Pax6 mutant mice, P. Soriano for Rosa26lacZ mice, A. McMahon for Wnt1En1 mice, S. Narayan for generating ZnG reporter mice, and M. Gross, A. Joyner, S. Pfaff and P. Slesinger for materials. We thank G. Lemke, S. Pfaff, P. Gray and K. Quinlan for their comments on the manuscript. This research was supported by grants from the National Institutes of Health (M.G., O.K.) and the Human Frontiers Science Program (O.K. and M.G.). G.M.L. was supported by an HFSP postdoctoral fellowship.
ASJC Scopus Subject Areas
- General