Bayesian Optimization on Large Graphs via a Graph Convolutional Generative Model: Application in Cardiac Model Personalization

Jwala Dhamala, Sandesh Ghimire, John L. Sapp, B. Milan Horáček, Linwei Wang

Producción científica: Capítulo en Libro/Reporte/Acta de conferenciaContribución a la conferencia

11 Citas (Scopus)

Resumen

Personalization of cardiac models involves the optimization of organ tissue properties that vary spatially over the non-Euclidean geometry model of the heart. To represent the high-dimensional (HD) unknown of tissue properties, most existing works rely on a low-dimensional (LD) partitioning of the geometrical model. While this exploits the geometry of the heart, it is of limited expressiveness to allow partitioning that is small enough for effective optimization. Recently, a variational auto-encoder (VAE) was utilized as a more expressive generative model to embed the HD optimization into the LD latent space. Its Euclidean nature, however, neglects the rich geometrical information in the heart. In this paper, we present a novel graph convolutional VAE to allow generative modeling of non-Euclidean data, and utilize it to embed Bayesian optimization of large graphs into a small latent space. This approach bridges the gap of previous works by introducing an expressive generative model that is able to incorporate the knowledge of spatial proximity and hierarchical compositionality of the underlying geometry. It further allows transferring of the learned features across different geometries, which was not possible with a regular VAE. We demonstrate these benefits of the presented method in synthetic and real data experiments of estimating tissue excitability in a cardiac electrophysiological model.

Idioma originalEnglish
Título de la publicación alojadaMedical Image Computing and Computer Assisted Intervention – MICCAI 2019 - 22nd International Conference, Proceedings
EditoresDinggang Shen, Pew-Thian Yap, Tianming Liu, Terry M. Peters, Ali Khan, Lawrence H. Staib, Caroline Essert, Sean Zhou
EditorialSpringer Science and Business Media Deutschland GmbH
Páginas458-467
Número de páginas10
ISBN (versión impresa)9783030322441
DOI
EstadoPublished - 2019
Evento22nd International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2019 - Shenzhen, China
Duración: oct. 13 2019oct. 17 2019

Serie de la publicación

NombreLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volumen11765 LNCS
ISSN (versión impresa)0302-9743
ISSN (versión digital)1611-3349

Conference

Conference22nd International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2019
País/TerritorioChina
CiudadShenzhen
Período10/13/1910/17/19

Nota bibliográfica

Funding Information:
Acknowledgements. This work is supported by the NSF under CAREER Award ACI-1350374 and the NHLBI of the NIH under Award R01HL145590.

Publisher Copyright:
© 2019, Springer Nature Switzerland AG.

ASJC Scopus Subject Areas

  • Theoretical Computer Science
  • General Computer Science

Huella

Profundice en los temas de investigación de 'Bayesian Optimization on Large Graphs via a Graph Convolutional Generative Model: Application in Cardiac Model Personalization'. En conjunto forman una huella única.

Citar esto

Dhamala, J., Ghimire, S., Sapp, J. L., Horáček, B. M., & Wang, L. (2019). Bayesian Optimization on Large Graphs via a Graph Convolutional Generative Model: Application in Cardiac Model Personalization. En D. Shen, P.-T. Yap, T. Liu, T. M. Peters, A. Khan, L. H. Staib, C. Essert, & S. Zhou (Eds.), Medical Image Computing and Computer Assisted Intervention – MICCAI 2019 - 22nd International Conference, Proceedings (pp. 458-467). (Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); Vol. 11765 LNCS). Springer Science and Business Media Deutschland GmbH. https://doi.org/10.1007/978-3-030-32245-8_51