Biomechanical signal classification of surgical and non-surgical candidates for knee arthroplasty

N. Mezghani, M. Dunbar, Y. Ouakrim, A. Fuentes, A. Mitiche, S. Whynot, G. Richardson

Producción científica: Capítulo en Libro/Reporte/Acta de conferenciaContribución a la conferencia

6 Citas (Scopus)

Resumen

The purpose of this article is two-fold : (1) to select a set of bio-mechanical features to characterize arthroplasty candidates and, (2) design a surgical and non-surgical candidate classifier via decision trees. The biomechanical features are generated from 3D knee kinematic patterns, namely, flexion-extension, abduction-adduction, and tibial internal-external rotation measurements taken during gait recordings. The selection of features is done by incremental selection of biomechanical parametes in a classification tree of cross-sectional data. These features are then used to generate decision rules for classification. The effectiveness of the classifier is evaluated by receiver operating characteristic curve analysis, namely, the area under the curve (AUC), sensitivity, and specificity. The classification accuracy is 85% for AUC, 80% for sensitivity, and 90% for specificity. These results demonstrate the effectiveness of the selected biomechanical features and decision tree classifier to perform automatic and objective classification of surgical and non-surgical candidates for arthroplasty.

Idioma originalEnglish
Título de la publicación alojada2016 International Symposium on Signal, Image, Video and Communications, ISIVC 2016
EditorialInstitute of Electrical and Electronics Engineers Inc.
Páginas287-290
Número de páginas4
ISBN (versión digital)9781509036110
DOI
EstadoPublished - abr. 6 2017
Evento2016 International Symposium on Signal, Image, Video and Communications, ISIVC 2016 - Tunis, Tunisia
Duración: nov. 21 2016nov. 23 2016

Serie de la publicación

Nombre2016 International Symposium on Signal, Image, Video and Communications, ISIVC 2016

Conference

Conference2016 International Symposium on Signal, Image, Video and Communications, ISIVC 2016
País/TerritorioTunisia
CiudadTunis
Período11/21/1611/23/16

Nota bibliográfica

Publisher Copyright:
© 2016 IEEE.

ASJC Scopus Subject Areas

  • Computer Networks and Communications
  • Computer Vision and Pattern Recognition
  • Signal Processing

Huella

Profundice en los temas de investigación de 'Biomechanical signal classification of surgical and non-surgical candidates for knee arthroplasty'. En conjunto forman una huella única.

Citar esto