Resumen
Plant cell walls are composed of cellulose, hemicellulose, and lignin, collectively known as lignocellulose. Microorganisms degrade lignocellulose to liberate sugars to meet metabolic demands. Using a metagenomic sequencing approach, we previously demonstrated that the microbiome of the North American porcupine (Erethizon dorsatum) is replete with genes that could encode lignocellulose-degrading enzymes. Here, we report the identification, synthesis and partial characterization of four novel genes from the porcupine microbiome encoding putative lignocellulose-degrading enzymes: β-glucosidase, α-L-arabinofuranosidase, β-xylosidase, and endo-1,4-β-xylanase. These genes were identified via conserved catalytic domains associated with cellulose- and hemicellulose-degradation. Phylogenetic trees were created for each of these putative enzymes to depict genetic relatedness to known enzymes. Candidate genes were synthesized and cloned into plasmid expression vectors for inducible protein expression and secretion. The putative β-glucosidase fusion protein was efficiently secreted but did not permit Escherichia coli (E. coli) to use cellobiose as a sole carbon source, nor did the affinity purified enzyme cleave p-Nitrophenyl β-D-gluco-pyranoside (p-NPG) substrate in vitro over a range of physiological pH levels (pH 5–7). The putative hemicellulose-degrading β-xylosidase and α-L-arabinofuranosidase enzymes also lacked in vitro enzyme activity, but the affinity purified endo-1,4-β-xylanase protein cleaved a 6-chloro-4-methylumbelliferyl xylobioside substrate in acidic and neutral conditions, with maximal activity at pH 7. At this optimal pH, K M , V max , and k cat were determined to be 32.005 ± 4.72 μM, 1.16x10 -5 ± 3.55x10 -7 M/s, and 94.72 s -1 , respectively. Thus, our pipeline enabled successful identification and characterization of a novel hemicellulose-degrading enzyme from the porcupine microbiome. Progress towards the goal of introducing a complete lignocellulose-degradation pathway into E. coli will be accelerated by combining synthetic metagenomic approaches with functional metagenomic library screening, which can identify novel enzymes unrelated to those found in available databases.
Idioma original | English |
---|---|
Número de artículo | e0209221 |
Publicación | PLoS One |
Volumen | 14 |
N.º | 1 |
DOI | |
Estado | Published - ene. 2019 |
Nota bibliográfica
Funding Information:This research was supported by grants from the Dalhousie Medical Research Foundation and the Springboard Innovation Mobilization We thank Chris Fetter (Dalhousie U.) for guidance in enzyme kinetics calculations. We thank Drs. Steven Hallam and Steve Withers (UBC) for the generous gift of CMU-X2 substrate. We thank Zack Armstrong (UBC) for help with troubleshooting enzyme assays and manuscript pre-review. We thank all of the members and mentors of the 2016 and 2017 Dalhousie iGEM teams who launched the porcupine microbiome studies that formed the foundation for the current study.
Publisher Copyright:
© 2019 Thornbury et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
ASJC Scopus Subject Areas
- General
PubMed: MeSH publication types
- Journal Article
- Research Support, Non-U.S. Gov't