Resumen
Background: The Synurophyceae is one of most important photosynthetic stramenopile algal lineages in freshwater ecosystems. They are characterized by siliceous scales covering the cell or colony surface and possess plastids of red-algal secondary or tertiary endosymbiotic origin. Despite their ecological and evolutionary significance, the relationships amongst extant Synurophyceae are unclear, as is their relationship to most other stramenopiles. Results: Here we report a comparative analysis of plastid genomes sequenced from five representative synurophycean algae. Most of these plastid genomes are highly conserved with respect to genome structure and coding capacity, with the exception of gene re-arrangements and partial duplications at the boundary of the inverted repeat and single-copy regions. Several lineage-specific gene loss/gain events and intron insertions were detected (e.g., cemA, dnaB, syfB, and trnL). Conclusions: Unexpectedly, the cemA gene of Synurophyceae shows a strong relationship with sequences from members of the green-algal lineage, suggesting the occurrence of a lateral gene transfer event. Using a molecular clock approach based on silica fossil record data, we infer the timing of genome re-arrangement and gene gain/loss events in the plastid genomes of Synurophyceae.
Idioma original | English |
---|---|
Número de artículo | 20 |
Publicación | BMC Evolutionary Biology |
Volumen | 19 |
N.º | 1 |
DOI | |
Estado | Published - ene. 11 2019 |
Nota bibliográfica
Funding Information:This research was supported by the National Research Foundation (NRF) of Korea (NRF-2015R1D1A1A01057899 and 2018R1D1A1B07050727) to JIK; NRF (NRF-2016R1C1B1007929) to JJ; the Czech Science Foundation (grant number 17-13254S) to PŠ; the Collaborative Genome Program (20140428) funded by the Ministry of Oceans and Fisheries, Korea and NRF (NRF-2017R1A2B3001923) to HSY; the Natural Sciences and Engineering Research Council of Canada to JMA; and NRF (2015R1A2A2A01003192 and 2015M1A5A1041808) to WS. These funding organizations were not involved in the design of the study, in the collection, analysis and interpretation of the data, or in writing the manuscript.
Publisher Copyright:
© 2019 The Author(s).
ASJC Scopus Subject Areas
- Ecology, Evolution, Behavior and Systematics
PubMed: MeSH publication types
- Comparative Study
- Journal Article
- Research Support, Non-U.S. Gov't