TY - JOUR
T1 - Diagnostic Performance and Interreader Agreement of the MRI Clear Cell Likelihood Score for Characterization of cT1a and cT1b Solid Renal Masses
T2 - An External Validation Study
AU - Dunn, Marshall
AU - Linehan, Victoria
AU - Clarke, Sharon E.
AU - Keough, Valerie
AU - Nelson, Ralph
AU - Costa, Andreu F.
PY - 2022/11/1
Y1 - 2022/11/1
N2 - BACKGROUND. The clear cell likelihood score (ccLS) has been proposed for the noninvasive differentiation of clear cell renal cell carcinoma (ccRCC) from other renal neoplasms on multiparametric MRI (mpMRI), though further external validation remains needed. OBJECTIVE. The purpose of our study was to evaluate the diagnostic performance and interreader agreement of the ccLS version 2.0 (v2.0) for characterizing solid renal masses as ccRCC. METHODS. This retrospective study included 102 patients (67 men, 35 women; mean age, 56.9 ± 12.8 [SD] years) who underwent mpMRI between January 2013 and February 2018, showing a total of 108 (≥ 25% enhancing tissue) solid renal masses measuring 7 cm or smaller (83 cT1a [≤ 4 cm] and 25 cT1b [> 4 cm and ≤ 7 cm]), all with a histologic diagnosis. Three abdominal radiologists independently reviewed the MRI examinations using ccLS v2.0. Median reader sensitivity, specificity, and accuracy were computed for predicting ccRCC by ccLS of 4 or greater, and individual reader AUCs were derived. The percentage of masses that were ccRCC was calculated, stratified by ccLS. Interobserver agreement was assessed by the Fleiss kappa statistic. RESULTS. The sample included 45 ccRCCs (34 cT1a, 11 cT1b), 30 papillary renal cell carcinomas (RCCs), 13 chromophobe RCCs, 14 oncocytomas, and six fat-poor angiomyolipomas. Median reader sensitivity, specificity, and accuracy for predicting ccRCC by ccLS of 4 or greater were 85%, 82%, and 83% among cT1a masses and 82%, 100%, and 92% among cT1b masses. The three readers' AUCs for predicting ccRCC by ccLS for cT1a masses were 0.90, 0.84, and 0.89 and for cT1b masses were 0.99, 0.97, and 0.92. Across readers, the percentage of masses that were ccRCC among cT1a masses was 0%, 0%, 20%, 68%, and 93% for ccLS of 1, 2, 3, 4, and 5, respectively; among cT1b masses, the percentage of masses that were ccRCC was 0%, 0%, 32%, 90%, and 100% for ccLS of 1, 2, 3, 4, and 5, respectively. Interobserver agreement among cT1a and cT1b masses for ccLS of 4 or greater was 0.82 and 0.83 and for ccLS of 1-5 overall was 0.65 and 0.62, respectively. CONCLUSION. This study provides external validation of the ccLS, finding overall high measures of diagnostic performance and interreader agreement. CLINICAL IMPACT. The ccLS provides a standardized approach to the noninvasive diagnosis of ccRCC by MRI.
AB - BACKGROUND. The clear cell likelihood score (ccLS) has been proposed for the noninvasive differentiation of clear cell renal cell carcinoma (ccRCC) from other renal neoplasms on multiparametric MRI (mpMRI), though further external validation remains needed. OBJECTIVE. The purpose of our study was to evaluate the diagnostic performance and interreader agreement of the ccLS version 2.0 (v2.0) for characterizing solid renal masses as ccRCC. METHODS. This retrospective study included 102 patients (67 men, 35 women; mean age, 56.9 ± 12.8 [SD] years) who underwent mpMRI between January 2013 and February 2018, showing a total of 108 (≥ 25% enhancing tissue) solid renal masses measuring 7 cm or smaller (83 cT1a [≤ 4 cm] and 25 cT1b [> 4 cm and ≤ 7 cm]), all with a histologic diagnosis. Three abdominal radiologists independently reviewed the MRI examinations using ccLS v2.0. Median reader sensitivity, specificity, and accuracy were computed for predicting ccRCC by ccLS of 4 or greater, and individual reader AUCs were derived. The percentage of masses that were ccRCC was calculated, stratified by ccLS. Interobserver agreement was assessed by the Fleiss kappa statistic. RESULTS. The sample included 45 ccRCCs (34 cT1a, 11 cT1b), 30 papillary renal cell carcinomas (RCCs), 13 chromophobe RCCs, 14 oncocytomas, and six fat-poor angiomyolipomas. Median reader sensitivity, specificity, and accuracy for predicting ccRCC by ccLS of 4 or greater were 85%, 82%, and 83% among cT1a masses and 82%, 100%, and 92% among cT1b masses. The three readers' AUCs for predicting ccRCC by ccLS for cT1a masses were 0.90, 0.84, and 0.89 and for cT1b masses were 0.99, 0.97, and 0.92. Across readers, the percentage of masses that were ccRCC among cT1a masses was 0%, 0%, 20%, 68%, and 93% for ccLS of 1, 2, 3, 4, and 5, respectively; among cT1b masses, the percentage of masses that were ccRCC was 0%, 0%, 32%, 90%, and 100% for ccLS of 1, 2, 3, 4, and 5, respectively. Interobserver agreement among cT1a and cT1b masses for ccLS of 4 or greater was 0.82 and 0.83 and for ccLS of 1-5 overall was 0.65 and 0.62, respectively. CONCLUSION. This study provides external validation of the ccLS, finding overall high measures of diagnostic performance and interreader agreement. CLINICAL IMPACT. The ccLS provides a standardized approach to the noninvasive diagnosis of ccRCC by MRI.
UR - http://www.scopus.com/inward/record.url?scp=85140417563&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85140417563&partnerID=8YFLogxK
U2 - 10.2214/AJR.22.27378
DO - 10.2214/AJR.22.27378
M3 - Article
C2 - 35642765
AN - SCOPUS:85140417563
SN - 0361-803X
VL - 219
SP - 793
EP - 803
JO - American Journal of Roentgenology
JF - American Journal of Roentgenology
IS - 5
ER -