TY - JOUR
T1 - Expression of magA in Legionella pneumophila Philadelphia-1 Is Developmentally Regulated and a Marker of Formation of Mature Intracellular Forms
AU - Hiltz, Margot F.
AU - Sisson, Gary R.
AU - Brassinga, Ann Karen C.
AU - Garduno, Elizabeth
AU - Garduno, Rafael A.
AU - Hoffman, Paul S.
PY - 2004/5
Y1 - 2004/5
N2 - Legionella pneumophila displays a biphasic developmental cycle in which replicating forms (RFs) differentiate postexponentially into highly infectious, cyst-like mature intracellular forms (MIFs). Using comparative protein profile analyses (MIFs versus RFs), we identified a 20-kDa protein, previously annotated as "Mip-like" protein, that was enriched in MIFs. However, this 20-kDa protein shared no similarity with Mip, a well-characterized peptidyl-prolyl isomerase of L. pneumophila, and for clarity we renamed it MagA (for "MIF-associated gene"). We monitored MagA levels across the growth cycle (in vitro and in vivo) by immunoblotting and established that MagA levels increased postexponentially in vitro (∼3-fold) and nearly 10-fold during MIF morphogenesis in HeLa cells. DNA sequence analysis of the maga locus revealed an upstream divergently transcribed gene, msrA, encoding a peptide methionine sulfoxide reductase and a shared promoter region containing direct and indirect repeat sequences as well as -10 hexamers often associated with stationary-phase regulation. While MagA has no known function, it contains a conserved CXXC motif commonly found in members of the thioredoxin reductase family and in AhpD reductases that are associated with alkylhydroperoxide reductase (AhpC), suggesting a possible role in protection from oxidative stress. MIFs from L. pneumophila strain Lp02 containing a magA deletion exhibited differences in Giménez staining, as well as an apparent increase in cytopathology to HeLa cells, but otherwise were unaltered in virulence traits. As demonstrated by this study, MagA appears to be a MIF-specific protein expressed late in intracellular growth that may serve as a useful marker of development.
AB - Legionella pneumophila displays a biphasic developmental cycle in which replicating forms (RFs) differentiate postexponentially into highly infectious, cyst-like mature intracellular forms (MIFs). Using comparative protein profile analyses (MIFs versus RFs), we identified a 20-kDa protein, previously annotated as "Mip-like" protein, that was enriched in MIFs. However, this 20-kDa protein shared no similarity with Mip, a well-characterized peptidyl-prolyl isomerase of L. pneumophila, and for clarity we renamed it MagA (for "MIF-associated gene"). We monitored MagA levels across the growth cycle (in vitro and in vivo) by immunoblotting and established that MagA levels increased postexponentially in vitro (∼3-fold) and nearly 10-fold during MIF morphogenesis in HeLa cells. DNA sequence analysis of the maga locus revealed an upstream divergently transcribed gene, msrA, encoding a peptide methionine sulfoxide reductase and a shared promoter region containing direct and indirect repeat sequences as well as -10 hexamers often associated with stationary-phase regulation. While MagA has no known function, it contains a conserved CXXC motif commonly found in members of the thioredoxin reductase family and in AhpD reductases that are associated with alkylhydroperoxide reductase (AhpC), suggesting a possible role in protection from oxidative stress. MIFs from L. pneumophila strain Lp02 containing a magA deletion exhibited differences in Giménez staining, as well as an apparent increase in cytopathology to HeLa cells, but otherwise were unaltered in virulence traits. As demonstrated by this study, MagA appears to be a MIF-specific protein expressed late in intracellular growth that may serve as a useful marker of development.
UR - http://www.scopus.com/inward/record.url?scp=2342606043&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=2342606043&partnerID=8YFLogxK
U2 - 10.1128/JB.186.10.3038-3045.2004
DO - 10.1128/JB.186.10.3038-3045.2004
M3 - Article
C2 - 15126465
AN - SCOPUS:2342606043
SN - 0021-9193
VL - 186
SP - 3038
EP - 3045
JO - Journal of Bacteriology
JF - Journal of Bacteriology
IS - 10
ER -