Few-Shot Generation of Personalized Neural Surrogates for Cardiac Simulation via Bayesian Meta-learning

Xiajun Jiang, Zhiyuan Li, Ryan Missel, Md Shakil Zaman, Brian Zenger, Wilson W. Good, Rob S. MacLeod, John L. Sapp, Linwei Wang

Producción científica: Capítulo en Libro/Reporte/Acta de conferenciaContribución a la conferencia

2 Citas (Scopus)

Resumen

Clinical adoption of personalized virtual heart simulations faces challenges in model personalization and expensive computation. While an ideal solution is an efficient neural surrogate that at the same time is personalized to an individual subject, the state-of-the-art is either concerned with personalizing an expensive simulation model, or learning an efficient yet generic surrogate. This paper presents a completely new concept to achieve personalized neural surrogates in a single coherent framework of meta-learning (metaPNS). Instead of learning a single neural surrogate, we pursue the process of learning a personalized neural surrogate using a small amount of context data from a subject, in a novel formulation of few-shot generative modeling underpinned by: 1) a set-conditioned neural surrogate for cardiac simulation that, conditioned on subject-specific context data, learns to generate query simulations not included in the context set, and 2) a meta-model of amortized variational inference that learns to condition the neural surrogate via simple feed-forward embedding of context data. As test time, metaPNS delivers a personalized neural surrogate by fast feed-forward embedding of a small and flexible number of data available from an individual, achieving – for the first time – personalization and surrogate construction for expensive simulations in one end-to-end learning framework. Synthetic and real-data experiments demonstrated that metaPNS was able to improve personalization and predictive accuracy in comparison to conventionally-optimized cardiac simulation models, at a fraction of computation.

Idioma originalEnglish
Título de la publicación alojadaMedical Image Computing and Computer Assisted Intervention – MICCAI 2022 - 25th International Conference, Proceedings
EditoresLinwei Wang, Qi Dou, P. Thomas Fletcher, Stefanie Speidel, Shuo Li
EditorialSpringer Science and Business Media Deutschland GmbH
Páginas46-56
Número de páginas11
ISBN (versión impresa)9783031164514
DOI
EstadoPublished - 2022
Evento25th International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2022 - Singapore, Singapore
Duración: sep. 18 2022sep. 22 2022

Serie de la publicación

NombreLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volumen13438 LNCS
ISSN (versión impresa)0302-9743
ISSN (versión digital)1611-3349

Conference

Conference25th International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2022
País/TerritorioSingapore
CiudadSingapore
Período9/18/229/22/22

Nota bibliográfica

Publisher Copyright:
© 2022, The Author(s), under exclusive license to Springer Nature Switzerland AG.

ASJC Scopus Subject Areas

  • Theoretical Computer Science
  • General Computer Science

Huella

Profundice en los temas de investigación de 'Few-Shot Generation of Personalized Neural Surrogates for Cardiac Simulation via Bayesian Meta-learning'. En conjunto forman una huella única.

Citar esto