TY - JOUR
T1 - Functional evidence for D-serine inhibition of non-N-methyl-D-aspartate ionotropic glutamate receptors in retinal neurons
AU - Daniels, Bryan A.
AU - Wood, Leah
AU - Tremblay, François
AU - Baldridge, William H.
PY - 2012/1
Y1 - 2012/1
N2 - D-Serine is an important signaling molecule throughout the central nervous system, acting as an N-methyl-D-aspartate (NMDA) receptor coagonist. This study investigated the D-serine modulation of non-NMDA ionotropic glutamate receptors expressed by inner retinal neurons. We first identified that the degradation of endogenous retinal D-serine, by application of D-amino acid oxidase, caused an enhancement of kainate- and α-amino-3-hydroxy-5-methyl-4-isoxazoleproprionic acid (AMPA) receptor-mediated calcium responses from the ganglion cell layer of the isolated rat retina and light-evoked responses obtained by multi-electrode array recordings from the guinea pig retina. Approximately 30-45% of cells were endogenously inhibited by D-serine, as suggested by the effect of D-amino acid oxidase. Conversely, bath application of D-serine caused a reduction in multi-electrode array recorded responses and decreased kainate, but not potassium-induced calcium responses, in a concentration-dependent manner (IC50, 280μm). Using cultured retinal ganglion cells to reduce network influences, D-serine reduced kainate-induced calcium responses and AMPA induced whole-cell currents. Finally, the inhibitory effect of D-serine on the kainate-induced calcium response was abolished by IEM 1460, thereby identifying calcium-permeable AMPA receptors as a potential target for D-serine. To our knowledge, this is the first study to address specifically the effect of D-serine on AMPA/kainate receptors in intact central nervous system tissue, to identify its effect on calcium permeable AMPA receptors and to report the endogenous inhibition of AMPA/kainate receptors.
AB - D-Serine is an important signaling molecule throughout the central nervous system, acting as an N-methyl-D-aspartate (NMDA) receptor coagonist. This study investigated the D-serine modulation of non-NMDA ionotropic glutamate receptors expressed by inner retinal neurons. We first identified that the degradation of endogenous retinal D-serine, by application of D-amino acid oxidase, caused an enhancement of kainate- and α-amino-3-hydroxy-5-methyl-4-isoxazoleproprionic acid (AMPA) receptor-mediated calcium responses from the ganglion cell layer of the isolated rat retina and light-evoked responses obtained by multi-electrode array recordings from the guinea pig retina. Approximately 30-45% of cells were endogenously inhibited by D-serine, as suggested by the effect of D-amino acid oxidase. Conversely, bath application of D-serine caused a reduction in multi-electrode array recorded responses and decreased kainate, but not potassium-induced calcium responses, in a concentration-dependent manner (IC50, 280μm). Using cultured retinal ganglion cells to reduce network influences, D-serine reduced kainate-induced calcium responses and AMPA induced whole-cell currents. Finally, the inhibitory effect of D-serine on the kainate-induced calcium response was abolished by IEM 1460, thereby identifying calcium-permeable AMPA receptors as a potential target for D-serine. To our knowledge, this is the first study to address specifically the effect of D-serine on AMPA/kainate receptors in intact central nervous system tissue, to identify its effect on calcium permeable AMPA receptors and to report the endogenous inhibition of AMPA/kainate receptors.
UR - http://www.scopus.com/inward/record.url?scp=84855272169&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84855272169&partnerID=8YFLogxK
U2 - 10.1111/j.1460-9568.2011.07925.x
DO - 10.1111/j.1460-9568.2011.07925.x
M3 - Article
C2 - 22128843
AN - SCOPUS:84855272169
SN - 0953-816X
VL - 35
SP - 56
EP - 65
JO - European Journal of Neuroscience
JF - European Journal of Neuroscience
IS - 1
ER -