Generating synthetic aging trajectories with a weighted network model using cross-sectional data

Spencer Farrell, Arnold Mitnitski, Kenneth Rockwood, Andrew Rutenberg

Producción científica: Contribución a una revistaArtículorevisión exhaustiva

12 Citas (Scopus)

Resumen

We develop a computational model of human aging that generates individual health trajectories with a set of observed health attributes. Our model consists of a network of interacting health attributes that stochastically damage with age to form health deficits, leading to eventual mortality. We train and test the model for two different cross-sectional observational aging studies that include simple binarized clinical indicators of health. In both studies, we find that cohorts of simulated individuals generated from the model resemble the observed cross-sectional data in both health characteristics and mortality. We can generate large numbers of synthetic individual aging trajectories with our weighted network model. Predicted average health trajectories and survival probabilities agree well with the observed data.

Idioma originalEnglish
Número de artículo19833
PublicaciónScientific Reports
Volumen10
N.º1
DOI
EstadoPublished - dic. 2020

Nota bibliográfica

Funding Information:
We thank ACENET and Compute Canada for computational resources. ADR thanks the Natural Sciences and Engineering Research Council (NSERC) for an operating Grant (RGPIN 2019-05888). KR has operational funding from the Canadian Institutes of Health Research (PJT-156114) and personal support form the Dalhousie Medical Research Foundation as the Kathryn Allen Weldon Professor of Alzheimer Research.

Publisher Copyright:
© 2020, The Author(s).

ASJC Scopus Subject Areas

  • General

PubMed: MeSH publication types

  • Journal Article
  • Research Support, Non-U.S. Gov't

Huella

Profundice en los temas de investigación de 'Generating synthetic aging trajectories with a weighted network model using cross-sectional data'. En conjunto forman una huella única.

Citar esto

Farrell, S., Mitnitski, A., Rockwood, K., & Rutenberg, A. (2020). Generating synthetic aging trajectories with a weighted network model using cross-sectional data. Scientific Reports, 10(1), Artículo 19833. https://doi.org/10.1038/s41598-020-76827-3