Gravity of human impacts mediates coral reef conservation gains

Joshua E. Cinner, Eva Maire, Cindy Huchery, M. Aaron MacNeil, Nicholas A.J. Graham, Camilo Mora, Tim R. McClanahan, Michele L. Barnes, John N. Kittinger, Christina C. Hicks, Stephanie D’Agata, Andrew S. Hoey, Georgina G. Gurney, David A. Feary, Ivor D. Williams, Michel Kulbicki, Laurent Vigliola, Laurent Wantiez, Graham J. Edgar, Rick D. Stuart-SmithStuart A. Sandin, Alison Green, Marah J. Hardt, Maria Beger, Alan M. Friedlander, Shaun K. Wilson, Eran Brokovich, Andrew J. Brooks, Juan J. Cruz-Motta, David J. Booth, Pascale Chabanet, Charlotte Gough, Mark Tupper, Sebastian C.A. Ferse, U. Rashid Sumaila, Shinta Pardede, David Mouillot

Producción científica: Contribución a una revistaArtículorevisión exhaustiva

214 Citas (Scopus)

Resumen

Coral reefs provide ecosystem goods and services for millions of people in the tropics, but reef conditions are declining worldwide. Effective solutions to the crisis facing coral reefs depend in part on understanding the context under which different types of conservation benefits can be maximized. Our global analysis of nearly 1,800 tropical reefs reveals how the intensity of human impacts in the surrounding seascape, measured as a function of human population size and accessibility to reefs (“gravity”), diminishes the effectiveness of marine reserves at sustaining reef fish biomass and the presence of top predators, even where compliance with reserve rules is high. Critically, fish biomass in high-compliance marine reserves located where human impacts were intensive tended to be less than a quarter that of reserves where human impacts were low. Similarly, the probability of encountering top predators on reefs with high human impacts was close to zero, even in high-compliance marine reserves. However, we find that the relative difference between openly fished sites and reserves (what we refer to as conservation gains) are highest for fish biomass (excluding predators) where human impacts are moderate and for top predators where human impacts are low. Our results illustrate critical ecological trade-offs in meeting key conservation objectives: reserves placed where there are moderate-to-high human impacts can provide substantial conservation gains for fish biomass, yet they are unlikely to support key ecosystem functions like higher-order predation, which is more prevalent in reserve locations with low human impacts.

Idioma originalEnglish
Páginas (desde-hasta)E6116-E6125
PublicaciónProceedings of the National Academy of Sciences of the United States of America
Volumen115
N.º27
DOI
EstadoPublished - jul. 3 2018

Nota bibliográfica

Funding Information:
We thank J. Zamborian Mason and A. Fordyce for assistance with analyses and figures, and to numerous scientists who collected data used in the research. The Australian Research Council Centre of Excellence for Coral Reef Studies and The Pew Charitable Trusts funded working group meetings.

Funding Information:
ACKNOWLEDGMENTS. We thank J. Zamborian Mason and A. Fordyce for assistance with analyses and figures, and to numerous scientists who collected data used in the research. The Australian Research Council Centre of Excellence for Coral Reef Studies and The Pew Charitable Trusts funded working group meetings.

Publisher Copyright:
© 2018 National Academy of Sciences. All Rights Reserved.

ASJC Scopus Subject Areas

  • General

Huella

Profundice en los temas de investigación de 'Gravity of human impacts mediates coral reef conservation gains'. En conjunto forman una huella única.

Citar esto