TY - JOUR
T1 - Inducible nitric oxide synthase, nitrotyrosine and p53 mutations in the molecular pathogenesis of Barrett's esophagus and esophageal adenocarcinoma
AU - Vaninetti, Nadine M.
AU - Geldenhuys, Laurette
AU - Porter, Geoffrey A.
AU - Risch, Harvey
AU - Hainaut, Pierre
AU - Guernsey, Duane L.
AU - Casson, Alan G.
PY - 2008/4
Y1 - 2008/4
N2 - Nitric oxide (NO) has been implicated as a potential causative factor for endogenous p53 mutations in gastrointestinal malignancy. To investigate the role of NO in esophageal adenocarcinoma (EADC), we studied patterns of p53 mutations, expression of inducible nitric oxide synthase (iNOS) and the tissue accumulation of nitrotyrosine (NTS), a stable reaction product of NO and a marker for cellular protein damage, in human premalignant and malignant esophageal epithelia. Tissues were obtained from patients with gastroesophageal reflux disease (GERD)-induced esophagitis (n = 76), Barrett's esophagus (BE; n = 119) and primary EADC (n = 54). DNA sequencing was used to characterize p53 mutations, RT-PCR to study iNOS mRNA expression, and immunohistochemistry to study NTS. Relative to self-matched normal epithelia, a progressive increase in iNOS mRNA expression was seen in GERD (30%; 23/76), BE (48%; 57/119), and EADC (63%; 34/54) tissues (P < 0.001). Among patients with EADC, elevated levels of NTS immunoreactivity were more frequent in tumors with p53 mutations (11/21; 52%) compared with tumors with wild-type p53 (9/33; 27%; P = 0.063), and specifically in tumors with p53 mutations at CpG dinucleotides (10/12; 83%) compared with non-CpG p53 mutations (1/9; 11%; P = 0.008). The increasing frequency of iNOS (mRNA) overexpression in GERD, BE and EADC supports the hypothesis that an active inflammatory process, most likely a consequence of GERD, underlies molecular progression to EADC. The highly significant association between NTS, reflecting chronic NO-induced cellular protein damage, and endogenous p53 mutations at CpG dinucleotides, provides further evidence for a molecular link between chronic inflammation and esophageal malignancy.
AB - Nitric oxide (NO) has been implicated as a potential causative factor for endogenous p53 mutations in gastrointestinal malignancy. To investigate the role of NO in esophageal adenocarcinoma (EADC), we studied patterns of p53 mutations, expression of inducible nitric oxide synthase (iNOS) and the tissue accumulation of nitrotyrosine (NTS), a stable reaction product of NO and a marker for cellular protein damage, in human premalignant and malignant esophageal epithelia. Tissues were obtained from patients with gastroesophageal reflux disease (GERD)-induced esophagitis (n = 76), Barrett's esophagus (BE; n = 119) and primary EADC (n = 54). DNA sequencing was used to characterize p53 mutations, RT-PCR to study iNOS mRNA expression, and immunohistochemistry to study NTS. Relative to self-matched normal epithelia, a progressive increase in iNOS mRNA expression was seen in GERD (30%; 23/76), BE (48%; 57/119), and EADC (63%; 34/54) tissues (P < 0.001). Among patients with EADC, elevated levels of NTS immunoreactivity were more frequent in tumors with p53 mutations (11/21; 52%) compared with tumors with wild-type p53 (9/33; 27%; P = 0.063), and specifically in tumors with p53 mutations at CpG dinucleotides (10/12; 83%) compared with non-CpG p53 mutations (1/9; 11%; P = 0.008). The increasing frequency of iNOS (mRNA) overexpression in GERD, BE and EADC supports the hypothesis that an active inflammatory process, most likely a consequence of GERD, underlies molecular progression to EADC. The highly significant association between NTS, reflecting chronic NO-induced cellular protein damage, and endogenous p53 mutations at CpG dinucleotides, provides further evidence for a molecular link between chronic inflammation and esophageal malignancy.
UR - http://www.scopus.com/inward/record.url?scp=41449117292&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=41449117292&partnerID=8YFLogxK
U2 - 10.1002/mc.20382
DO - 10.1002/mc.20382
M3 - Article
C2 - 17849424
AN - SCOPUS:41449117292
SN - 0899-1987
VL - 47
SP - 275
EP - 285
JO - Molecular Carcinogenesis
JF - Molecular Carcinogenesis
IS - 4
ER -