Lateral transfer of introns in the cryptophyte plastid genome

Hameed Khan, John M. Archibald

Producción científica: Contribución a una revistaArtículorevisión exhaustiva

29 Citas (Scopus)

Resumen

Cryptophytes are unicellular eukaryotic algae that acquired photosynthesis secondarily through the uptake and retention of a red-algal endosymbiont. The plastid genome of the cryptophyte Rhodomonas salina CCMP1319 was recently sequenced and found to contain a genetic element similar to a group II intron. Here, we explore the distribution, structure and function of group II introns in the plastid genomes of distantly and closely related cryptophytes. The predicted secondary structures of six introns contained in three different genes were examined and found to be generally similar to group II introns but unusually large in size (including the largest known noncoding intron). Phylogenetic analysis suggests that the cryptophyte group II introns were acquired via lateral gene transfer (LGT) from a euglenid-like species. Unexpectedly, the six introns occupy five distinct genomic locations, suggesting multiple LGT events or recent transposition (or both). Combined with structural considerations, RT-PCR experiments suggest that the transferred introns are degenerate 'twintrons' (i.e. nested group II/group III introns) in which the internal intron has lost its splicing capability, resulting in an amalgamation with the outer intron.

Idioma originalEnglish
Páginas (desde-hasta)3043-3053
Número de páginas11
PublicaciónNucleic Acids Research
Volumen36
N.º9
DOI
EstadoPublished - may. 2008

Nota bibliográfica

Funding Information:
We thank C. Lane and W. F. Doolittle for comments on an earlier version of this article, as well as those of two anonymous reviewers. M. Schnare is also thanked for comments and generous assistance with intron secondary structure predictions. This work was supported by an NSERC discovery grant awarded to J.M.A. J.M.A. is a Scholar of the Canadian Institute for Advanced Research, Program in Integrated Microbial Biodiversity. Funding to pay the Open Access publication charges for this article was provided by NSERC.

ASJC Scopus Subject Areas

  • Genetics

PubMed: MeSH publication types

  • Journal Article
  • Research Support, Non-U.S. Gov't

Huella

Profundice en los temas de investigación de 'Lateral transfer of introns in the cryptophyte plastid genome'. En conjunto forman una huella única.

Citar esto