TY - JOUR
T1 - Measurement of cell microrheology by magnetic twisting cytometry with frequency domain demodulation
AU - Puig-De-Morales, Marina
AU - Grabulosa, Mireia
AU - Alcaraz, Jordi
AU - Mullol, Joaquim
AU - Maksym, Geoffrey N.
AU - Fredberg, Jeffrey J.
AU - Navajas, Daniel
PY - 2001
Y1 - 2001
N2 - Magnetic twisting cytometry (MTC) (Wang N, Butler JP, and Ingber DE, Science 260: 1124-1127, 1993) is a useful technique for probing cell micromechanics. The technique is based on twisting ligand-coated magnetic microbeads bound to membrane receptors and measuring the resulting bead rotation with a magnetometer. Owing to the low signal-to-noise ratio, however, the magnetic signal must be modulated, which is accomplished by spinning the sample at ∼10 Hz. Present demodulation approaches limit the MTC range to frequencies <0.5 Hz. We propose a novel demodulation algorithm to expand the frequency range of MTC measurements to higher frequencies. The algorithm is based on coherent demodulation in the frequency domain, and its frequency range is limited only by the dynamic response of the magnetometer. Using the new algorithm, we measured the complex modulus of elasticity (G*) of cultured human bronchial epithelial cells (BEAS-2B) from 0.03 to 16 Hz. Cells were cultured in supplemented RPMI medium, and ferromagnetic beads (∼5 μm) coated with an RGD peptide were bound to the cell membrane. Both the storage (G′, real part of G*) and loss (G″, imaginary part of G*) moduli increased with frequency as ωα (2π × frequency) with α ≈ 1/4 The ratio G″/G′ was ∼0.5 and varied little with frequency. Thus the cells exhibited a predominantly elastic behavior with a weak power law of frequency and a nearly constant proportion of elastic vs. frictional stresses, implying that the mechanical behavior conformed to the so-called structural damping (or constant-phase) law (Maksym GN, Fabry B, Butler JP, Navajas D, Tschumperlin DJ, LaPorte JD, and Fredberg JJ, J Appl Physiol 89: 1619-1632, 2000). We conclude that frequency domain demodulation dramatically increases the frequency range that can be probed with MTC and reveals that the mechanics of these cells conforms to constant-phase behavior over a range of frequencies approaching three decades.
AB - Magnetic twisting cytometry (MTC) (Wang N, Butler JP, and Ingber DE, Science 260: 1124-1127, 1993) is a useful technique for probing cell micromechanics. The technique is based on twisting ligand-coated magnetic microbeads bound to membrane receptors and measuring the resulting bead rotation with a magnetometer. Owing to the low signal-to-noise ratio, however, the magnetic signal must be modulated, which is accomplished by spinning the sample at ∼10 Hz. Present demodulation approaches limit the MTC range to frequencies <0.5 Hz. We propose a novel demodulation algorithm to expand the frequency range of MTC measurements to higher frequencies. The algorithm is based on coherent demodulation in the frequency domain, and its frequency range is limited only by the dynamic response of the magnetometer. Using the new algorithm, we measured the complex modulus of elasticity (G*) of cultured human bronchial epithelial cells (BEAS-2B) from 0.03 to 16 Hz. Cells were cultured in supplemented RPMI medium, and ferromagnetic beads (∼5 μm) coated with an RGD peptide were bound to the cell membrane. Both the storage (G′, real part of G*) and loss (G″, imaginary part of G*) moduli increased with frequency as ωα (2π × frequency) with α ≈ 1/4 The ratio G″/G′ was ∼0.5 and varied little with frequency. Thus the cells exhibited a predominantly elastic behavior with a weak power law of frequency and a nearly constant proportion of elastic vs. frictional stresses, implying that the mechanical behavior conformed to the so-called structural damping (or constant-phase) law (Maksym GN, Fabry B, Butler JP, Navajas D, Tschumperlin DJ, LaPorte JD, and Fredberg JJ, J Appl Physiol 89: 1619-1632, 2000). We conclude that frequency domain demodulation dramatically increases the frequency range that can be probed with MTC and reveals that the mechanics of these cells conforms to constant-phase behavior over a range of frequencies approaching three decades.
UR - http://www.scopus.com/inward/record.url?scp=0034874114&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0034874114&partnerID=8YFLogxK
U2 - 10.1152/jappl.2001.91.3.1152
DO - 10.1152/jappl.2001.91.3.1152
M3 - Article
C2 - 11509510
AN - SCOPUS:0034874114
SN - 8750-7587
VL - 91
SP - 1152
EP - 1159
JO - Journal of Applied Physiology
JF - Journal of Applied Physiology
IS - 3
ER -