Multifaceted substrate capture scheme of a rhomboid protease

Tyler Reddy, Jan K. Rainey

Producción científica: Contribución a una revistaArtículorevisión exhaustiva

22 Citas (Scopus)

Resumen

Rhomboid proteases are integral membrane serine proteases that catalyze peptide bond hydrolysis in biological membranes. Little is currently known about the interaction of enzyme and substrate. Coarse-grained molecular dynamics simulations in hydrated lipid bilayers are employed herein to study the interaction of the E. coli rhomboid protease GlpG (ecGlpG) with the transmembrane domain (TMD) of the substrate Spitz. Spitz does not associate with ecGlpG exclusively at the putative substrate gate near TMD 5. Instead, there are six prominent and stable interaction sites, including one between TMDs 1 and 3, with the closest enzyme-substrate proximity occurring at the ends of helical TMDs or in loops. Bilayer thinning is observed proximal to ecGlpG, but there is no evidence of additional thinning of the bilayer upon interaction with substrate. We suggest that the initial interaction between enzyme and substrate, or substrate capture event, is not limited to a single site on the enzyme, and may be driven by juxtamembrane electrostatic interactions. The findings are of additional interest because catalytically inactive rhomboids (iRhoms) are now known to interact with the substrates of their catalytically active counterparts and to antagonize the enzyme-driven pathways.

Idioma originalEnglish
Páginas (desde-hasta)8942-8954
Número de páginas13
PublicaciónJournal of Physical Chemistry B
Volumen116
N.º30
DOI
EstadoPublished - ago. 2 2012

ASJC Scopus Subject Areas

  • Physical and Theoretical Chemistry
  • Surfaces, Coatings and Films
  • Materials Chemistry

Huella

Profundice en los temas de investigación de 'Multifaceted substrate capture scheme of a rhomboid protease'. En conjunto forman una huella única.

Citar esto