TY - JOUR
T1 - Multiple phosphoinositide 3-kinase-dependent steps in activation of protein kinase B
AU - Scheid, Michael P.
AU - Marignani, Paola A.
AU - Woodgett, James R.
PY - 2002
Y1 - 2002
N2 - The protein kinase B (PKB)/Akt family of serine kinases is rapidly activated following agonist-induced stimulation of phosphoinositide 3-kinase (PI3K). To probe the molecular events important for the activation process, we employed two distinct models of posttranslational inducible activation and membrane recruitment. PKB induction requires phosphorylation of two critical residues, threonine 308 in the activation loop and serine 473 near the carboxyl terminus. Membrane localization of PKB was found to be a primary determinant of serine 473 phosphorylation. PI3K activity was equally important for promoting phosphorylation of serine 473, but this was separable from membrane localization. PDK1 phosphorylation of threonine 308 was primarily dependent upon prior serine 473 phosphorylation and, to a lesser extent, localization to the plasma membrane. Mutation of serine 473 to alanine or aspartic acid modulated the degree of threonine 308 phosphorylation in both models, while a point mutation in the substrate-binding region of PDK1 (L155E) rendered PDK1 incapable of phosphorylating PKB. Together, these results suggest a mechanism in which 3′ phosphoinositide lipid-dependent translocation of PKB to the plasma membrane promotes serine 473 phosphorylation, which is, in turn, necessary for PDK1-mediated phosphorylation of threonine 308 and, consequentially, full PKB activation.
AB - The protein kinase B (PKB)/Akt family of serine kinases is rapidly activated following agonist-induced stimulation of phosphoinositide 3-kinase (PI3K). To probe the molecular events important for the activation process, we employed two distinct models of posttranslational inducible activation and membrane recruitment. PKB induction requires phosphorylation of two critical residues, threonine 308 in the activation loop and serine 473 near the carboxyl terminus. Membrane localization of PKB was found to be a primary determinant of serine 473 phosphorylation. PI3K activity was equally important for promoting phosphorylation of serine 473, but this was separable from membrane localization. PDK1 phosphorylation of threonine 308 was primarily dependent upon prior serine 473 phosphorylation and, to a lesser extent, localization to the plasma membrane. Mutation of serine 473 to alanine or aspartic acid modulated the degree of threonine 308 phosphorylation in both models, while a point mutation in the substrate-binding region of PDK1 (L155E) rendered PDK1 incapable of phosphorylating PKB. Together, these results suggest a mechanism in which 3′ phosphoinositide lipid-dependent translocation of PKB to the plasma membrane promotes serine 473 phosphorylation, which is, in turn, necessary for PDK1-mediated phosphorylation of threonine 308 and, consequentially, full PKB activation.
UR - http://www.scopus.com/inward/record.url?scp=0036333737&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0036333737&partnerID=8YFLogxK
U2 - 10.1128/MCB.22.17.6247-6260.2002
DO - 10.1128/MCB.22.17.6247-6260.2002
M3 - Article
C2 - 12167717
AN - SCOPUS:0036333737
SN - 0270-7306
VL - 22
SP - 6247
EP - 6260
JO - Molecular and Cellular Biology
JF - Molecular and Cellular Biology
IS - 17
ER -