Nicotinamide N-methyltransferase knockdown protects against diet-induced obesity

Daniel Kraus, Qin Yang, Dong Kong, Alexander S. Banks, Lin Zhang, Joseph T. Rodgers, Eija Pirinen, Thomas C. Pulinilkunnil, Fengying Gong, Ya Chin Wang, Yana Cen, Anthony A. Sauve, John M. Asara, Odile D. Peroni, Brett P. Monia, Sanjay Bhanot, Leena Alhonen, Pere Puigserver, Barbara B. Kahn

Producción científica: Contribución a una revistaArtículorevisión exhaustiva

388 Citas (Scopus)

Resumen

In obesity and type 2 diabetes, Glut4 glucose transporter expression is decreased selectively in adipocytes. Adipose-specific knockout or overexpression of Glut4 alters systemic insulin sensitivity. Here we show, using DNA array analyses, that nicotinamide N-methyltransferase (Nnmt) is the most strongly reciprocally regulated gene when comparing gene expression in white adipose tissue (WAT) from adipose-specific Glut4-knockout or adipose-specific Glut4-overexpressing mice with their respective controls. NNMT methylates nicotinamide (vitamin B3) using S-adenosylmethionine (SAM) as a methyl donor. Nicotinamide is a precursor of NAD+, an important cofactor linking cellular redox states with energy metabolism. SAM provides propylamine for polyamine biosynthesis and donates a methyl group for histone methylation. Polyamine flux including synthesis, catabolism and excretion, is controlled by the rate-limiting enzymes ornithine decarboxylase (ODC) and spermidine-spermine N1-acetyltransferase (SSAT; encoded by Sat1) and by polyamine oxidase (PAO), and has a major role in energy metabolism. We report that NNMT expression is increased in WAT and liver of obese and diabetic mice. Nnmt knockdown in WAT and liver protects against diet-induced obesity by augmenting cellular energy expenditure. NNMT inhibition increases adipose SAM and NAD+ levels and upregulates ODC and SSAT activity as well as expression, owing to the effects of NNMT on histone H3 lysine 4 methylation in adipose tissue. Direct evidence for increased polyamine flux resulting from NNMT inhibition includes elevated urinary excretion and adipocyte secretion of diacetylspermine, a product of polyamine metabolism. NNMT inhibition in adipocytes increases oxygen consumption in an ODC-, SSAT- and PAO-dependent manner. Thus, NNMT is a novel regulator of histone methylation, polyamine flux and NAD+ -dependent SIRT1 signalling, and is a unique and attractive target for treating obesity and type 2 diabetes.

Idioma originalEnglish
Páginas (desde-hasta)258-262
Número de páginas5
PublicaciónNature
Volumen508
N.º7495
DOI
EstadoPublished - abr. 9 2014

Nota bibliográfica

Funding Information:
Acknowledgements We thank R. Weinshilboum for NNMT antibody; P. Woster for DFMO;M.Yuanfor tandemmass spectrometry; A. Karppinen,A.Korhonen,T.Reponen, A.Uimari, S.Pirnes-KarhuandT.Koponen for measurements of ODC andSSAT activity; C. Semenkovich and S. Fried for protocols for FAS activity measurements; and P. Aryal for assistance with real-time qPCR. D.Kr. is supported by the Deutsche Forschungsgemeinschaft (KR 3475/1-1) and American Heart Association (AHA) (09POST2250499); Q.Y. is a Klarman Scholar at the Beth Israel Deaconess Medical Center. This work is supported by grants from the NIH (R37 DK43051, P30 DK57521) and a grant from the JPB foundation to B.B.K.; grants from the NIH (KO8 DK090149, R01 DK100385, BNORC P30 DK046200 and NORCH P30 DK040561) to Q.Y.; grant RO1 DK69966 to P.P.; P01CA120964 and P30CA006516-46 to J.M.A.; AHA 13SDG14620005 and P&F P30 DK0460200 to D.K.; the Ellison Medical Foundation New Scholar in Aging Award to A.A.S.; and academy of Finland grant 118590 to L.A.

Publisher Copyright:
© 2014 Macmillan Publishers Limited. All rights reserved.

ASJC Scopus Subject Areas

  • General

Huella

Profundice en los temas de investigación de 'Nicotinamide N-methyltransferase knockdown protects against diet-induced obesity'. En conjunto forman una huella única.

Citar esto