Optimal bounded-error strategies for projective measurements in nonorthogonal-state discrimination

M. A.P. Touzel, R. B.A. Adamson, A. M. Steinberg

Producción científica: Contribución a una revistaArtículorevisión exhaustiva

36 Citas (Scopus)

Resumen

Research in nonorthogonal-state discrimination has given rise to two conventional optimal strategies: unambiguous discrimination (UD) and minimum error discrimination. We explore the experimentally relevant range of measurement strategies between the two, where the rate of inconclusive results is minimized for a bounded-error rate. We first provide some constraints on the problem that apply to generalized measurements [positive-operator-valued measurements (POVMs)]. We then provide the theory for the optimal projective measurement in this range. Through analytical and numerical results we investigate this family of projective, bounded-error strategies and compare it to the POVM family as well as to experimental implementation of UD using POVMs. We also discuss a possible application of these bounded-error strategies to quantum key distribution.

Idioma originalEnglish
Número de artículo062314
PublicaciónPhysical Review A - Atomic, Molecular, and Optical Physics
Volumen76
N.º6
DOI
EstadoPublished - dic. 19 2007
Publicado de forma externa

ASJC Scopus Subject Areas

  • Atomic and Molecular Physics, and Optics

Huella

Profundice en los temas de investigación de 'Optimal bounded-error strategies for projective measurements in nonorthogonal-state discrimination'. En conjunto forman una huella única.

Citar esto