PCR-based synthesis of repetitive single-stranded DNA for applications to nanobiotechnology

Sima S. Zein, Alexandre A. Vetcher, Stephen D. Levene

Producción científica: Contribución a una revistaArtículorevisión exhaustiva

2 Citas (Scopus)

Resumen

Recent data show that assembly of repetitive-sequence, single-stranded DNA molecules (ssDNA) and carbon nanotubes (CNTs) depend on the specific sequence repeat. Therefore, it is of practical interest to assess various methods for generating single-stranded DNA molecules that contain repetitive sequences. Existing automated synthesis procedures for generating long (>100 nt) ssDNA molecules generate ssDNA products of variable purity and yield. An alternative to automated synthesis is the polymerase chain reaction (PCR), which provides a powerful tool for the amplification of minute amounts of specific DNA sequences. Here we show that a modified asymmetric PCR method allows synthesis of long ssDNAs comprised of tandem repeats of the repetitive vertebrate telomeric sequence (TTAGGG)n, and is also applicable to arbitrary (repetitive or nonrepetitive) DNA. Long, repetitive deoxynucleotides produced by automated synthesis are surprisingly heterogeneous with respect to both length and sequence. Benefits of the method described here are that long, repetitive ssDNA sequences are generated with high sequence fidelity and yield.

Idioma originalEnglish
Páginas (desde-hasta)287-294
Número de páginas8
PublicaciónInternational Journal of Nanoscience
Volumen4
N.º3
DOI
EstadoPublished - jun. 2005
Publicado de forma externa

ASJC Scopus Subject Areas

  • Biotechnology
  • Bioengineering
  • General Materials Science
  • Condensed Matter Physics
  • Computer Science Applications
  • Electrical and Electronic Engineering

Huella

Profundice en los temas de investigación de 'PCR-based synthesis of repetitive single-stranded DNA for applications to nanobiotechnology'. En conjunto forman una huella única.

Citar esto

Zein, S. S., Vetcher, A. A., & Levene, S. D. (2005). PCR-based synthesis of repetitive single-stranded DNA for applications to nanobiotechnology. International Journal of Nanoscience, 4(3), 287-294. https://doi.org/10.1142/S0219581X05003140