Projected barzilai-borwein method with infeasible iterates for nonnegative least-squares image deblurring

Kathleen Fraser, Dirk V. Arnold, Graham Dellaire

Producción científica: Capítulo en Libro/Reporte/Acta de conferenciaContribución a la conferencia

2 Citas (Scopus)

Resumen

We present a non-monotonic gradient descent algorithm with infeasible iterates for the nonnegatively constrained least-squares deblurring of images. The skewness of the intensity values of the deblurred image is used to establish a criterion for when to enforce the nonnegativity constraints. The approach is observed on several test images to either perform comparably to or to outperform a non-monotonic gradient descent approach that does not use infeasible iterates, as well as the gradient projected conjugate gradients algorithm. Our approach is distinguished from the latter by lower memory requirements, making it suitable for use with large, three-dimensional images common in medical imaging.

Idioma originalEnglish
Título de la publicación alojadaProceedings - Conference on Computer and Robot Vision, CRV 2014
EditorialIEEE Computer Society
Páginas189-194
Número de páginas6
ISBN (versión impresa)9781479943388
DOI
EstadoPublished - 2014
Evento11th Conference on Computer and Robot Vision, CRV 2014 - Montreal, QC, Canada
Duración: may. 6 2014may. 9 2014

Serie de la publicación

NombreProceedings - Conference on Computer and Robot Vision, CRV 2014

Conference

Conference11th Conference on Computer and Robot Vision, CRV 2014
País/TerritorioCanada
CiudadMontreal, QC
Período5/6/145/9/14

ASJC Scopus Subject Areas

  • Artificial Intelligence
  • Computer Vision and Pattern Recognition

Huella

Profundice en los temas de investigación de 'Projected barzilai-borwein method with infeasible iterates for nonnegative least-squares image deblurring'. En conjunto forman una huella única.

Citar esto