Quantifying the uncertainty in model parameters using gaussian process-based markov chain monte carlo: An application to cardiac electrophysiological models

Jwala Dhamala, John L. Sapp, Milan Horacek, Linwei Wang

Producción científica: Capítulo en Libro/Reporte/Acta de conferenciaContribución a la conferencia

5 Citas (Scopus)

Resumen

Estimation of patient-specific model parameters is important for personalized modeling, although sparse and noisy clinical data can introduce significant uncertainty in the estimated parameter values. This importance source of uncertainty, if left unquantified, will lead to unknown variability in model outputs that hinder their reliable adoptions. Probabilistic estimation model parameters, however, remains an unresolved challenge because standard Markov Chain Monte Carlo sampling requires repeated model simulations that are computationally infeasible. A common solution is to replace the simulation model with a computationally-efficient surrogate for a faster sampling. However, by sampling from an approximation of the exact posterior probability density function (pdf) of the parameters, the efficiency is gained at the expense of sampling accuracy. In this paper, we address this issue by integrating surrogate modeling into Metropolis Hasting (MH) sampling of the exact posterior pdfs to improve its acceptance rate. It is done by first quickly constructing a Gaussian process (GP) surrogate of the exact posterior pdfs using deterministic optimization. This efficient surrogate is then used to modify commonly-used proposal distributions in MH sampling such that only proposals accepted by the surrogate will be tested by the exact posterior pdf for acceptance/rejection, reducing unnecessary model simulations at unlikely candidates. Synthetic and real-data experiments using the presented method show a significant gain in computational efficiency without compromising the accuracy. In addition, insights into the non-identifiability and heterogeneity of tissue properties can be gained from the obtained posterior distributions.

Idioma originalEnglish
Título de la publicación alojadaInformation Processing in Medical Imaging - 25th International Conference, IPMI 2017, Proceedings
EditoresHongtu Zhu, Marc Niethammer, Martin Styner, Hongtu Zhu, Dinggang Shen, Pew-Thian Yap, Stephen Aylward, Ipek Oguz
EditorialSpringer Verlag
Páginas223-235
Número de páginas13
ISBN (versión impresa)9783319590493
DOI
EstadoPublished - 2017
Evento25th International Conference on Information Processing in Medical Imaging, IPMI 2017 - Boone, United States
Duración: jun. 25 2017jun. 30 2017

Serie de la publicación

NombreLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volumen10265 LNCS
ISSN (versión impresa)0302-9743
ISSN (versión digital)1611-3349

Conference

Conference25th International Conference on Information Processing in Medical Imaging, IPMI 2017
País/TerritorioUnited States
CiudadBoone
Período6/25/176/30/17

Nota bibliográfica

Funding Information:
This work is supported by the National Science Foundation under CAREER Award ACI-1350374 and the National Institute of Heart, Lung, and Blood of the National Institutes of Health under Award R21Hl125998.

Publisher Copyright:
© Springer International Publishing AG 2017.

ASJC Scopus Subject Areas

  • Theoretical Computer Science
  • General Computer Science

Huella

Profundice en los temas de investigación de 'Quantifying the uncertainty in model parameters using gaussian process-based markov chain monte carlo: An application to cardiac electrophysiological models'. En conjunto forman una huella única.

Citar esto

Dhamala, J., Sapp, J. L., Horacek, M., & Wang, L. (2017). Quantifying the uncertainty in model parameters using gaussian process-based markov chain monte carlo: An application to cardiac electrophysiological models. En H. Zhu, M. Niethammer, M. Styner, H. Zhu, D. Shen, P.-T. Yap, S. Aylward, & I. Oguz (Eds.), Information Processing in Medical Imaging - 25th International Conference, IPMI 2017, Proceedings (pp. 223-235). (Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); Vol. 10265 LNCS). Springer Verlag. https://doi.org/10.1007/978-3-319-59050-9_18