TY - JOUR
T1 - Resistance to UV-induced apoptosis in Chinese-hamster ovary cells overexpressing phosphatidylserine synthases
AU - Yu, Anan
AU - McMaster, Christopher R.
AU - Byers, David M.
AU - Ridgway, Neale D.
AU - Cook, Harold W.
PY - 2004/8/1
Y1 - 2004/8/1
N2 - Externalization of PtdSer (phosphatidylserine) is an important event in signalling removal of apoptotic cells. In contrast with previous work [Yu, Byers, Ridgway, McMaster and Cook (2000) Biochim. Biophys. Acta 1487, 296-308] with U937 cells showing that specific stimulation of PtdSer biosynthesis during apoptosis was caspase dependent, PtdSer biosynthesis in CHO (Chinese-hamster ovary)-K1 increased 2.5-fold during UV-induced apoptosis but was not reversed by a caspase inhibitor, Z-VAD-FMK (benzyloxycarbonyl-Val-Ala-DL-Asp- fluoromethylketone). Also, in CHO-K1 cells, stimulation of synthesis was less specific for PtdSer as similar levels of stimulation were observed for sphingomyelin biosynthesis. Involvement of PtdSer synthase isoforms was tested in CHO-K1 cells overexpressing PSS I (PtdSer synthase I) and PSS II. Both types of transformed cells showed resistance to UV-induced apoptosis based on the decreased levels of caspase 3 activation and morphology changes; externalization of PtdSer was reduced with UV treatment even though expression of endogenous scramblase increased slightly. Serine-labelling experiments showed that PSS I- or PSS II-expressing cells had higher basal levels of PtdSer biosynthesis compared with vector control cells. When cells were exposed to UV light to induce apoptosis, PtdSer biosynthesis was further stimulated 1.5-and 2-fold in PSS I- and PSS II-expressing cells respectively compared with UV-treated vector cells. Caspase activation was not required, as Z-VAD-FMK did not change PtdSer synthesis. Although enhanced PtdSer synthesis was supposed to facilitate apoptosis, cells overexpressing PSSI and II were actually resistant to UV-induced apoptosis. Whereas enhanced PtdSer synthesis was associated with apoptosis, potential anti-apoptotic effects were observed when excess activity of these synthetic enzymes was present. This suggests a tightly regulated role for PtdSer synthesis and/or an important dependence on compartmentation of PSS enzymes in association with scramblase facilitated enrichment of this phospholipid at the cell surface.
AB - Externalization of PtdSer (phosphatidylserine) is an important event in signalling removal of apoptotic cells. In contrast with previous work [Yu, Byers, Ridgway, McMaster and Cook (2000) Biochim. Biophys. Acta 1487, 296-308] with U937 cells showing that specific stimulation of PtdSer biosynthesis during apoptosis was caspase dependent, PtdSer biosynthesis in CHO (Chinese-hamster ovary)-K1 increased 2.5-fold during UV-induced apoptosis but was not reversed by a caspase inhibitor, Z-VAD-FMK (benzyloxycarbonyl-Val-Ala-DL-Asp- fluoromethylketone). Also, in CHO-K1 cells, stimulation of synthesis was less specific for PtdSer as similar levels of stimulation were observed for sphingomyelin biosynthesis. Involvement of PtdSer synthase isoforms was tested in CHO-K1 cells overexpressing PSS I (PtdSer synthase I) and PSS II. Both types of transformed cells showed resistance to UV-induced apoptosis based on the decreased levels of caspase 3 activation and morphology changes; externalization of PtdSer was reduced with UV treatment even though expression of endogenous scramblase increased slightly. Serine-labelling experiments showed that PSS I- or PSS II-expressing cells had higher basal levels of PtdSer biosynthesis compared with vector control cells. When cells were exposed to UV light to induce apoptosis, PtdSer biosynthesis was further stimulated 1.5-and 2-fold in PSS I- and PSS II-expressing cells respectively compared with UV-treated vector cells. Caspase activation was not required, as Z-VAD-FMK did not change PtdSer synthesis. Although enhanced PtdSer synthesis was supposed to facilitate apoptosis, cells overexpressing PSSI and II were actually resistant to UV-induced apoptosis. Whereas enhanced PtdSer synthesis was associated with apoptosis, potential anti-apoptotic effects were observed when excess activity of these synthetic enzymes was present. This suggests a tightly regulated role for PtdSer synthesis and/or an important dependence on compartmentation of PSS enzymes in association with scramblase facilitated enrichment of this phospholipid at the cell surface.
UR - http://www.scopus.com/inward/record.url?scp=4344569341&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=4344569341&partnerID=8YFLogxK
U2 - 10.1042/BJ20031857
DO - 10.1042/BJ20031857
M3 - Article
C2 - 15099192
AN - SCOPUS:4344569341
SN - 0264-6021
VL - 381
SP - 609
EP - 618
JO - Biochemical Journal
JF - Biochemical Journal
IS - 3
ER -