Role of EscU auto-cleavage in promoting type III effector translocation into host cells by enteropathogenic Escherichia coli

Jenny Lee Thomassin, Xiang He, Nikhil A. Thomas

Producción científica: Contribución a una revistaArtículorevisión exhaustiva

23 Citas (Scopus)

Resumen

Background: Type III secretion systems (T3SS) of bacterial pathogens coordinate effector protein injection into eukaryotic cells. The YscU/FlhB group of proteins comprises members associated with T3SS which undergo a specific auto-cleavage event at a conserved NPTH amino acid sequence. The crystal structure of the C-terminal portion of EscU from enteropathogenic Escherichia coli (EPEC) suggests this auto-cleaving protein provides an interface for substrate interactions involved in type III secretion events. Results: We demonstrate EscU must be auto-cleaved for bacteria to efficiently deliver type III effectors into infected cells. A non-cleaving EscU(N262A) variant supported very low levels of in vitro effector secretion. These effector proteins were not able to support EPEC infection of cultured HeLa cells. In contrast, EscU(P263A) was demonstrated to be partially auto-cleaved and moderately restored effector translocation and functionality during EPEC infection, revealing an intermediate phenotype. EscU auto-cleavage was not required for inner membrane association of the T3SS ATPase EscN or the ring forming protein EscJ. In contrast, in the absence of EscU auto-cleavage, inner membrane association of the multicargo type III secretion chaperone CesT was altered suggesting that EscU auto-cleavage supports docking of chaperone-effector complexes at the inner membrane. In support of this interpretation, evidence of novel effector protein breakdown products in secretion assays were linked to the non-cleaved status of EscU(N262A). Conclusions: These data provide new insight into the role of EscU auto-cleavage in EPEC. The experimental data suggests that EscU auto-cleavage results in a suitable binding interface at the inner membrane that accommodates protein complexes during type III secretion events. The results also demonstrate that altered EPEC genetic backgrounds that display intermediate levels of effector secretion and translocation can be isolated and studied. These genetic backgrounds should be valuable in deciphering sequential and temporal events involved in EPEC type III secretion.

Idioma originalEnglish
Número de artículo205
PublicaciónBMC Microbiology
Volumen11
DOI
EstadoPublished - 2011

Nota bibliográfica

Funding Information:
The authors would like to thank members of the Thomas lab and the Department for critical reading of the manuscript. Madhulika Prasad provided valuable technical assistance with experiments. Roy Duncan graciously provided monoclonal anti-HA antibodies. This research was supported by an operating grant (MOP84472) from the Canadian Institutes of Health Research (CIHR). Infrastructure and research equipment were supported with funds provided by the Canadian Foundation for Innovation Leaders Opportunity Fund (CFI-LOF), the Dalhousie Medical Research Foundation and Dalhousie University. N.A.T is the recipient of a CIHR New Investigator Award. The funding agencies did not participate in study design; in the collection, analysis, and interpretation of data; in the writing of the manuscript; and in the decision to submit the manuscript for publication.

ASJC Scopus Subject Areas

  • Microbiology
  • Microbiology (medical)

PubMed: MeSH publication types

  • Journal Article
  • Research Support, Non-U.S. Gov't

Huella

Profundice en los temas de investigación de 'Role of EscU auto-cleavage in promoting type III effector translocation into host cells by enteropathogenic Escherichia coli'. En conjunto forman una huella única.

Citar esto