Selection of models of lagged identification rates and lagged association rates using AIC and QAIC

Producción científica: Contribución a una revistaArtículorevisión exhaustiva

109 Citas (Scopus)

Resumen

The lagged identification rate is the probability of identifying an individual given its identification some time lag earlier. The lagged association rate is the probability that two individuals are associated given their association some time lag earlier. Models of lagged identification and association rates fit by maximizing the sums of non independent log-likelihoods have approximately unbiased parameter estimates. Simulations suggest that: Akaike-Information-Criterion often selects the true model of lagged identification rate data; quasi-Akaike-Information-Criterion performs better for lagged association rates; and confidence intervals for parameters are best obtained by bootstrap methods for lagged identification rates and quasi-likelihood or jackknife methods for lagged association rates.

Idioma originalEnglish
Páginas (desde-hasta)1233-1246
Número de páginas14
PublicaciónCommunications in Statistics Part B: Simulation and Computation
Volumen36
N.º6
DOI
EstadoPublished - nov. 2007

Nota bibliográfica

Funding Information:
This work was funded by the Natural Sciences and Engineering Research Council of Canada.

ASJC Scopus Subject Areas

  • Statistics and Probability
  • Modelling and Simulation

Huella

Profundice en los temas de investigación de 'Selection of models of lagged identification rates and lagged association rates using AIC and QAIC'. En conjunto forman una huella única.

Citar esto