Spatially-adaptive multi-scale optimization for local parameter estimation: Application in cardiac electrophysiological models

Jwala Dhamala, John L. Sapp, Milan Horacek, Linwei Wang

Producción científica: Capítulo en Libro/Reporte/Acta de conferenciaContribución a la conferencia

7 Citas (Scopus)

Resumen

The estimation of local parameter values for a 3D cardiac model is important for revealing abnormal tissues with altered material properties and for building patient-specific models. Existing works in local parameter estimation typically represent the heart with a small number of pre-defined segments to reduce the dimension of unknowns. Such low-resolution approaches have limited ability to estimate tissues with varying sizes,locations,and distributions. We present a novel optimization framework to achieve a higher-resolution parameter estimation without using a high number of unknowns. It has two central elements: (1) a multi-scale coarse-to-fine optimization that uses low-resolution solutions to facilitate the higher-resolution optimization; and (2) a spatially adaptive scheme that dedicates higher resolution to regions of heterogeneous tissue properties whereas retaining low resolution in homogeneous regions. Synthetic and real-data experiments demonstrate the ability of the presented framework to improve the accuracy of local parameter estimation in comparison to optimization based on fixed-segment models.

Idioma originalEnglish
Título de la publicación alojadaMedical Image Computing and Computer-Assisted Intervention - MICCAI 2016 - 19th International Conference, Proceedings
EditoresLeo Joskowicz, Mert R. Sabuncu, William Wells, Gozde Unal, Sebastian Ourselin
EditorialSpringer Verlag
Páginas282-290
Número de páginas9
ISBN (versión impresa)9783319467252
DOI
EstadoPublished - 2016

Serie de la publicación

NombreLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volumen9902 LNCS
ISSN (versión impresa)0302-9743
ISSN (versión digital)1611-3349

Nota bibliográfica

Funding Information:
This work is supported by the National Science Foundation under CAREER Award ACI-1350374 and the National Institute of Heart, Lung, and Blood of the National Institutes of Health under Award R21Hl125998.

Publisher Copyright:
© Springer International Publishing AG 2016.

ASJC Scopus Subject Areas

  • Theoretical Computer Science
  • General Computer Science

Huella

Profundice en los temas de investigación de 'Spatially-adaptive multi-scale optimization for local parameter estimation: Application in cardiac electrophysiological models'. En conjunto forman una huella única.

Citar esto

Dhamala, J., Sapp, J. L., Horacek, M., & Wang, L. (2016). Spatially-adaptive multi-scale optimization for local parameter estimation: Application in cardiac electrophysiological models. En L. Joskowicz, M. R. Sabuncu, W. Wells, G. Unal, & S. Ourselin (Eds.), Medical Image Computing and Computer-Assisted Intervention - MICCAI 2016 - 19th International Conference, Proceedings (pp. 282-290). (Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); Vol. 9902 LNCS). Springer Verlag. https://doi.org/10.1007/978-3-319-46726-9_33