Sperm whale predator-prey interactions involve chasing and buzzing, but no acoustic stunning

A. Fais, M. Johnson, M. Wilson, N. Aguilar Soto, P. T. Madsen

Producción científica: Contribución a una revistaArtículorevisión exhaustiva

46 Citas (Scopus)

Resumen

The sperm whale carries a hypertrophied nose that generates powerful clicks for long-range echolocation. However, it remains a conundrum how this bizarrely shaped apex predator catches its prey. Several hypotheses have been advanced to propose both active and passive means to acquire prey, including acoustic debilitation of prey with very powerful clicks. Here we test these hypotheses by using sound and movement recording tags in a fine-scale study of buzz sequences to relate the acoustic behaviour of sperm whales with changes in acceleration in their head region during prey capture attempts. We show that in the terminal buzz phase, sperm whales reduce inter-click intervals and estimated source levels by 1-2 orders of magnitude. As a result, received levels at the prey are more than an order of magnitude below levels required for debilitation, precluding acoustic stunning to facilitate prey capture. Rather, buzzing involves high-frequency, low amplitude clicks well suited to provide high-resolution biosonar updates during the last stages of capture. The high temporal resolution helps to guide motor patterns during occasionally prolonged chases in which prey are eventually subdued with the aid of fast jaw movements and/or buccal suction as indicated by acceleration transients (jerks) near the end of buzzes.

Idioma originalEnglish
Número de artículo28562
PublicaciónScientific Reports
Volumen6
DOI
EstadoPublished - jun. 24 2016
Publicado de forma externa

ASJC Scopus Subject Areas

  • General

Huella

Profundice en los temas de investigación de 'Sperm whale predator-prey interactions involve chasing and buzzing, but no acoustic stunning'. En conjunto forman una huella única.

Citar esto