TY - JOUR
T1 - Targeted proteomic analysis of glycolysis in cancer cells
AU - Murphy, J. Patrick
AU - Pinto, Devanand M.
PY - 2011/2/4
Y1 - 2011/2/4
N2 - Altered expression of glycolysis proteins is an important yet poorly understood characteristic of cancer. To better understand the glycolytic changes during tumorigenesis, we designed a liquid chromatography multiple reaction monitoring (LC-MRM) assay targeting the "glycolysis proteome" in MCF-7 breast cancer cells, using isotope-coded dimethylation of peptides for relative quantification. In silico, dimethyl labeled tryptic peptides [M + 2H] 2+ (of length n) and their y n-1 fragment ions were determined based on UniprotKB database sequence entries for glycolysis proteins, related branching pathways, and reference proteins. Using predicted transitions ([M + 2H] 2+ - y n-1), MRM-initiated detection and sequencing (MIDAS) was performed on a dimethyl-labeled, tryptic digest from MCF-7 cells, using two- dimensional liquid chromatography mass spectrometry analysis. Three transitions for each peptide were selected from identified spectra and assessed using 1D-LC-MRM-MS. Collision energy (CE) and dwell times were optimized and matching transitions for "heavy" isotope-coded dimethylated peptides were calculated. Resulting LC-MRM transitions were then used to measure changes in the glycolytic proteome in insulin-like growth factor-1 (IGF-l)-stimulated MCF-7 cells and other breast cell lines. Increases in the expression of glycolysis proteins leading to lactic acid production were observed common to IGF-1-stimulated MCF-7 cells and the invasive MDA-MB-231 cell line. Preliminary analysis of lung tumors with varied states of differentiation demonstrated the clinical applicability of LC-MRM and showed decreased levels of PGK1 in poorly differentiated tumors.
AB - Altered expression of glycolysis proteins is an important yet poorly understood characteristic of cancer. To better understand the glycolytic changes during tumorigenesis, we designed a liquid chromatography multiple reaction monitoring (LC-MRM) assay targeting the "glycolysis proteome" in MCF-7 breast cancer cells, using isotope-coded dimethylation of peptides for relative quantification. In silico, dimethyl labeled tryptic peptides [M + 2H] 2+ (of length n) and their y n-1 fragment ions were determined based on UniprotKB database sequence entries for glycolysis proteins, related branching pathways, and reference proteins. Using predicted transitions ([M + 2H] 2+ - y n-1), MRM-initiated detection and sequencing (MIDAS) was performed on a dimethyl-labeled, tryptic digest from MCF-7 cells, using two- dimensional liquid chromatography mass spectrometry analysis. Three transitions for each peptide were selected from identified spectra and assessed using 1D-LC-MRM-MS. Collision energy (CE) and dwell times were optimized and matching transitions for "heavy" isotope-coded dimethylated peptides were calculated. Resulting LC-MRM transitions were then used to measure changes in the glycolytic proteome in insulin-like growth factor-1 (IGF-l)-stimulated MCF-7 cells and other breast cell lines. Increases in the expression of glycolysis proteins leading to lactic acid production were observed common to IGF-1-stimulated MCF-7 cells and the invasive MDA-MB-231 cell line. Preliminary analysis of lung tumors with varied states of differentiation demonstrated the clinical applicability of LC-MRM and showed decreased levels of PGK1 in poorly differentiated tumors.
UR - http://www.scopus.com/inward/record.url?scp=79955443321&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=79955443321&partnerID=8YFLogxK
U2 - 10.1021/pr100774f
DO - 10.1021/pr100774f
M3 - Article
C2 - 21058741
AN - SCOPUS:79955443321
SN - 1535-3893
VL - 10
SP - 604
EP - 613
JO - Journal of Proteome Research
JF - Journal of Proteome Research
IS - 2
ER -