TY - JOUR
T1 - The β1 integrin, very late activation antigen-4 on human neutrophils can contribute to neutrophil migration through connective tissue fibroblast barriers
AU - Gao, J. X.
AU - Issekutz, A. C.
PY - 1997
Y1 - 1997
N2 - Polymorphonuclear leucocyte (PMNL) accumulation in extravascular tissues and inflammatory exudates is dependent on their migration through blood vessel endothelium and then through connective tissue. Previously we utilized a barrier of human synovial and dermal fibroblasts (HSF or HDF) grown on microporous filters, as a model of PMNL migration through connective tissue. Those studies showed that β2 (CD18) and the β1 integrins, very late activation antigen-5 (VLA-5) and VLA-6, in part mediate this PMNL migration. Here we report that VLA-4, which can also be expressed at low levels on activated PMNL, is also involved in PMNL migration induced by C5a through fibroblast (HSF and HDF) barriers, because monoclonal antibody (mAb) to VLA-4 significantly inhibited (by 20-30%) PMNL migration. Blocking the function of CD18, VLA-5 or VLA-6 was not required for detection of the VLA-4-mediated migration. Combination treatment with mAb to VLA-4 and with mAb to VLA-5 or to VLA-6 further inhibited PMNL migration, irrespective of whether CD11/CD18 mechanisms were blocked with anti-CD18 mAb or not. Treatment of PMNL with a peptide based on the VLA-4-binding domain in the CS-1 fragment of fibronectin, but not a control peptide, inhibited PMNL migration to a comparable extent to treatment with mAb to VLA-4. A low level of VLA-4 was expressed on C5a-activated PMNL, detected by immunofluorescence flow cytometry. These results suggest that VLA-4 can be mobilized by human peripheral blood PMNL and can, in addition to VLA-5, VLA-6 and CD11/CD18 integrins, mediate PMNL migration through connective tissue. This is in marked contrast to PMNL transendothelial migration, where β1 integrins appear to play no significant role.
AB - Polymorphonuclear leucocyte (PMNL) accumulation in extravascular tissues and inflammatory exudates is dependent on their migration through blood vessel endothelium and then through connective tissue. Previously we utilized a barrier of human synovial and dermal fibroblasts (HSF or HDF) grown on microporous filters, as a model of PMNL migration through connective tissue. Those studies showed that β2 (CD18) and the β1 integrins, very late activation antigen-5 (VLA-5) and VLA-6, in part mediate this PMNL migration. Here we report that VLA-4, which can also be expressed at low levels on activated PMNL, is also involved in PMNL migration induced by C5a through fibroblast (HSF and HDF) barriers, because monoclonal antibody (mAb) to VLA-4 significantly inhibited (by 20-30%) PMNL migration. Blocking the function of CD18, VLA-5 or VLA-6 was not required for detection of the VLA-4-mediated migration. Combination treatment with mAb to VLA-4 and with mAb to VLA-5 or to VLA-6 further inhibited PMNL migration, irrespective of whether CD11/CD18 mechanisms were blocked with anti-CD18 mAb or not. Treatment of PMNL with a peptide based on the VLA-4-binding domain in the CS-1 fragment of fibronectin, but not a control peptide, inhibited PMNL migration to a comparable extent to treatment with mAb to VLA-4. A low level of VLA-4 was expressed on C5a-activated PMNL, detected by immunofluorescence flow cytometry. These results suggest that VLA-4 can be mobilized by human peripheral blood PMNL and can, in addition to VLA-5, VLA-6 and CD11/CD18 integrins, mediate PMNL migration through connective tissue. This is in marked contrast to PMNL transendothelial migration, where β1 integrins appear to play no significant role.
UR - http://www.scopus.com/inward/record.url?scp=0031040602&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0031040602&partnerID=8YFLogxK
U2 - 10.1111/j.1365-2567.1997.00448.x
DO - 10.1111/j.1365-2567.1997.00448.x
M3 - Article
C2 - 9155654
AN - SCOPUS:0031040602
SN - 0019-2805
VL - 90
SP - 448
EP - 454
JO - Immunology
JF - Immunology
IS - 3
ER -